Mister Exam

Integral of constant dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1     
  /     
 |      
 |  c dc
 |      
/       
0       
01cdc\int\limits_{0}^{1} c\, dc
Integral(c, (c, 0, 1))
Detail solution
  1. The integral of cnc^{n} is cn+1n+1\frac{c^{n + 1}}{n + 1} when n1n \neq -1:

    cdc=c22\int c\, dc = \frac{c^{2}}{2}

  2. Add the constant of integration:

    c22+constant\frac{c^{2}}{2}+ \mathrm{constant}


The answer is:

c22+constant\frac{c^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /            2
 |            c 
 | c dc = C + --
 |            2 
/               
cdc=C+c22\int c\, dc = C + \frac{c^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
1/2
12\frac{1}{2}
=
=
1/2
12\frac{1}{2}
1/2
Numerical answer [src]
0.5
0.5
The graph
Integral of constant dx

    Use the examples entering the upper and lower limits of integration.