Integral of cos(0,02x^3) dx
The solution
The answer (Indefinite)
[src]
/ _ / | 6 \
| |_ | 1/6 | -x |
| / 3\ x*Gamma(1/6)* | | | -----|
| |x | 1 2 \1/2, 7/6 | 10000/
| cos|--| dx = C + ------------------------------------
| \50/ 6*Gamma(7/6)
|
/
125031iΓ(31,50ix3)−5031iΓ(31,−50ix3)
The graph
_ _
|_ / 1/6 | -148035889 \ |_ / 1/6 | -887503681 \
23*Gamma(1/6)* | | | -----------| 31*Gamma(1/6)* | | | -----------|
1 2 \1/2, 7/6 | 156250000 / 1 2 \1/2, 7/6 | 156250000 /
- ------------------------------------------- + -------------------------------------------
30*Gamma(7/6) 30*Gamma(7/6)
125031iΓ(31,625029791i)−125031iΓ(31,625012167i)+125031iΓ(31,−625012167i)−125031iΓ(31,−625029791i)
=
_ _
|_ / 1/6 | -148035889 \ |_ / 1/6 | -887503681 \
23*Gamma(1/6)* | | | -----------| 31*Gamma(1/6)* | | | -----------|
1 2 \1/2, 7/6 | 156250000 / 1 2 \1/2, 7/6 | 156250000 /
- ------------------------------------------- + -------------------------------------------
30*Gamma(7/6) 30*Gamma(7/6)
30Γ(67)31Γ(61)1F2(6121,67−156250000887503681)−30Γ(67)23Γ(61)1F2(6121,67−156250000148035889)
Use the examples entering the upper and lower limits of integration.