Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of cotx Integral of cotx
  • Integral of xlnxdx
  • Integral of tan⁵x Integral of tan⁵x
  • Integral of ln2x Integral of ln2x
  • Identical expressions

  • (cosxdx)/sqrt(sin^2x+ three)
  • ( co sinus of e of xdx) divide by square root of ( sinus of squared x plus 3)
  • ( co sinus of e of xdx) divide by square root of ( sinus of squared x plus three)
  • (cosxdx)/√(sin^2x+3)
  • (cosxdx)/sqrt(sin2x+3)
  • cosxdx/sqrtsin2x+3
  • (cosxdx)/sqrt(sin²x+3)
  • (cosxdx)/sqrt(sin to the power of 2x+3)
  • cosxdx/sqrtsin^2x+3
  • (cosxdx) divide by sqrt(sin^2x+3)
  • Similar expressions

  • (cosxdx)/sqrt(sin^2x-3)

Integral of (cosxdx)/sqrt(sin^2x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |       cos(x)        
 |  ---------------- dx
 |     _____________   
 |    /    2           
 |  \/  sin (x) + 3    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\sqrt{\sin^{2}{\left(x \right)} + 3}}\, dx$$
Integral(cos(x)/sqrt(sin(x)^2 + 3), (x, 0, 1))
The answer (Indefinite) [src]
  /                            /                   
 |                            |                    
 |      cos(x)                |      cos(x)        
 | ---------------- dx = C +  | ---------------- dx
 |    _____________           |    _____________   
 |   /    2                   |   /        2       
 | \/  sin (x) + 3            | \/  3 + sin (x)    
 |                            |                    
/                            /                     
$$\int \frac{\cos{\left(x \right)}}{\sqrt{\sin^{2}{\left(x \right)} + 3}}\, dx = C + \int \frac{\cos{\left(x \right)}}{\sqrt{\sin^{2}{\left(x \right)} + 3}}\, dx$$
Numerical answer [src]
0.468496165263755
0.468496165263755

    Use the examples entering the upper and lower limits of integration.