Mister Exam

Other calculators

Integral of cos(x)^2*x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   0             
   /             
  |              
  |     2        
  |  cos (x)*x dx
  |              
 /               
-pi              
----             
 2               
$$\int\limits_{- \frac{\pi}{2}}^{0} x \cos^{2}{\left(x \right)}\, dx$$
Integral(cos(x)^2*x, (x, -pi/2, 0))
The answer (Indefinite) [src]
  /                                                                      
 |                       2       2    2       2    2                     
 |    2               cos (x)   x *cos (x)   x *sin (x)   x*cos(x)*sin(x)
 | cos (x)*x dx = C + ------- + ---------- + ---------- + ---------------
 |                       4          4            4               2       
/                                                                        
$$\int x \cos^{2}{\left(x \right)}\, dx = C + \frac{x^{2} \sin^{2}{\left(x \right)}}{4} + \frac{x^{2} \cos^{2}{\left(x \right)}}{4} + \frac{x \sin{\left(x \right)} \cos{\left(x \right)}}{2} + \frac{\cos^{2}{\left(x \right)}}{4}$$
The graph
The answer [src]
      2
1   pi 
- - ---
4    16
$$\frac{1}{4} - \frac{\pi^{2}}{16}$$
=
=
      2
1   pi 
- - ---
4    16
$$\frac{1}{4} - \frac{\pi^{2}}{16}$$
1/4 - pi^2/16
Numerical answer [src]
-0.366850275068085
-0.366850275068085

    Use the examples entering the upper and lower limits of integration.