Mister Exam

Other calculators

Integral of (cosx)^(1/2)sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |    ________          
 |  \/ cos(x) *sin(x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(x \right)} \sqrt{\cos{\left(x \right)}}\, dx$$
Integral(sqrt(cos(x))*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                 3/2   
 |   ________                 2*cos   (x)
 | \/ cos(x) *sin(x) dx = C - -----------
 |                                 3     
/                                        
$$\int \sin{\left(x \right)} \sqrt{\cos{\left(x \right)}}\, dx = C - \frac{2 \cos^{\frac{3}{2}}{\left(x \right)}}{3}$$
The graph
The answer [src]
         3/2   
2   2*cos   (1)
- - -----------
3        3     
$$\frac{2}{3} - \frac{2 \cos^{\frac{3}{2}}{\left(1 \right)}}{3}$$
=
=
         3/2   
2   2*cos   (1)
- - -----------
3        3     
$$\frac{2}{3} - \frac{2 \cos^{\frac{3}{2}}{\left(1 \right)}}{3}$$
2/3 - 2*cos(1)^(3/2)/3
Numerical answer [src]
0.401899594820912
0.401899594820912

    Use the examples entering the upper and lower limits of integration.