Mister Exam

Integral of cos(x+yy) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  cos(x + y*y) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \cos{\left(x + y y \right)}\, dx$$
Integral(cos(x + y*y), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of cosine is sine:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                   
 | cos(x + y*y) dx = C + sin(x + y*y)
 |                                   
/                                    
$$\int \cos{\left(x + y y \right)}\, dx = C + \sin{\left(x + y y \right)}$$
The answer [src]
     / 2\      /     2\
- sin\y / + sin\1 + y /
$$- \sin{\left(y^{2} \right)} + \sin{\left(y^{2} + 1 \right)}$$
=
=
     / 2\      /     2\
- sin\y / + sin\1 + y /
$$- \sin{\left(y^{2} \right)} + \sin{\left(y^{2} + 1 \right)}$$
-sin(y^2) + sin(1 + y^2)

    Use the examples entering the upper and lower limits of integration.