Mister Exam

Other calculators

Integral of cos(x)+tg(2x)*ctg(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                
  /                                
 |                                 
 |  (cos(x) + tan(2*x)*cot(2*x)) dx
 |                                 
/                                  
0                                  
$$\int\limits_{0}^{1} \left(\cos{\left(x \right)} + \tan{\left(2 x \right)} \cot{\left(2 x \right)}\right)\, dx$$
Integral(cos(x) + tan(2*x)*cot(2*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of cosine is sine:

    1. Don't know the steps in finding this integral.

      But the integral is

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                                                 
 | (cos(x) + tan(2*x)*cot(2*x)) dx = C + x + sin(x)
 |                                                 
/                                                  
$$\int \left(\cos{\left(x \right)} + \tan{\left(2 x \right)} \cot{\left(2 x \right)}\right)\, dx = C + x + \sin{\left(x \right)}$$
The graph
The answer [src]
1 + sin(1)
$$\sin{\left(1 \right)} + 1$$
=
=
1 + sin(1)
$$\sin{\left(1 \right)} + 1$$
1 + sin(1)
Numerical answer [src]
1.8414709848079
1.8414709848079

    Use the examples entering the upper and lower limits of integration.