Mister Exam

Integral of cosx+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  (cos(x) + 1) dx
 |                 
/                  
0                  
01(cos(x)+1)dx\int\limits_{0}^{1} \left(\cos{\left(x \right)} + 1\right)\, dx
Integral(cos(x) + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: x+sin(x)x + \sin{\left(x \right)}

  2. Add the constant of integration:

    x+sin(x)+constantx + \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

x+sin(x)+constantx + \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 | (cos(x) + 1) dx = C + x + sin(x)
 |                                 
/                                  
sinx+x\sin x+x
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
1 + sin(1)
sin1+1\sin 1+1
=
=
1 + sin(1)
sin(1)+1\sin{\left(1 \right)} + 1
Numerical answer [src]
1.8414709848079
1.8414709848079
The graph
Integral of cosx+1 dx

    Use the examples entering the upper and lower limits of integration.