Mister Exam

Other calculators

Integral of cos(x)*sin(x)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  cos(x)*sin(x)   
 |  ------------- dx
 |        x         
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)} \cos{\left(x \right)}}{x}\, dx$$
Integral((cos(x)*sin(x))/x, (x, 0, 1))
The answer (Indefinite) [src]
  /                              
 |                               
 | cos(x)*sin(x)          Si(2*x)
 | ------------- dx = C + -------
 |       x                   2   
 |                               
/                                
$$\int \frac{\sin{\left(x \right)} \cos{\left(x \right)}}{x}\, dx = C + \frac{\operatorname{Si}{\left(2 x \right)}}{2}$$
The graph
The answer [src]
Si(2)
-----
  2  
$$\frac{\operatorname{Si}{\left(2 \right)}}{2}$$
=
=
Si(2)
-----
  2  
$$\frac{\operatorname{Si}{\left(2 \right)}}{2}$$
Si(2)/2
Numerical answer [src]
0.802706488401347
0.802706488401347

    Use the examples entering the upper and lower limits of integration.