Mister Exam

Other calculators


cosx*sin(4sinx-1)dx

Integral of cosx*sin(4sinx-1)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                              
  /                              
 |                               
 |  cos(x)*sin(4*sin(x) - 1)*1 dx
 |                               
/                                
0                                
$$\int\limits_{0}^{1} \cos{\left(x \right)} \sin{\left(4 \sin{\left(x \right)} - 1 \right)} 1\, dx$$
Integral(cos(x)*sin(4*sin(x) - 1*1)*1, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                     
 |                                     cos(4*sin(x) - 1)
 | cos(x)*sin(4*sin(x) - 1)*1 dx = C - -----------------
 |                                             4        
/                                                       
$$\int \cos{\left(x \right)} \sin{\left(4 \sin{\left(x \right)} - 1 \right)} 1\, dx = C - \frac{\cos{\left(4 \sin{\left(x \right)} - 1 \right)}}{4}$$
The graph
The answer [src]
  cos(1 - 4*sin(1))   cos(1)
- ----------------- + ------
          4             4   
$$\frac{\cos{\left(1 \right)}}{4} - \frac{\cos{\left(1 - 4 \sin{\left(1 \right)} \right)}}{4}$$
=
=
  cos(1 - 4*sin(1))   cos(1)
- ----------------- + ------
          4             4   
$$\frac{\cos{\left(1 \right)}}{4} - \frac{\cos{\left(1 - 4 \sin{\left(1 \right)} \right)}}{4}$$
Numerical answer [src]
0.31355681542951
0.31355681542951
The graph
Integral of cosx*sin(4sinx-1)dx dx

    Use the examples entering the upper and lower limits of integration.