Mister Exam

Other calculators


cosx*e^x

Integral of cosx*e^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          x   
 |  cos(x)*e  dx
 |              
/               
0               
$$\int\limits_{0}^{1} e^{x} \cos{\left(x \right)}\, dx$$
Integral(cos(x)*E^x, (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand :

      Let and let .

      Then .

    2. For the integrand :

      Let and let .

      Then .

    3. Notice that the integrand has repeated itself, so move it to one side:

      Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                            x    x       
 |         x          cos(x)*e    e *sin(x)
 | cos(x)*e  dx = C + --------- + ---------
 |                        2           2    
/                                          
$${{e^{x}\,\left(\sin x+\cos x\right)}\over{2}}$$
The graph
The answer [src]
  1   e*cos(1)   e*sin(1)
- - + -------- + --------
  2      2          2    
$${{e\,\sin 1+e\,\cos 1}\over{2}}-{{1}\over{2}}$$
=
=
  1   e*cos(1)   e*sin(1)
- - + -------- + --------
  2      2          2    
$$- \frac{1}{2} + \frac{e \cos{\left(1 \right)}}{2} + \frac{e \sin{\left(1 \right)}}{2}$$
Numerical answer [src]
1.37802461354736
1.37802461354736
The graph
Integral of cosx*e^x dx

    Use the examples entering the upper and lower limits of integration.