1 / | | sin(x) | cos(x)*E dx | / 0
Integral(cos(x)*E^sin(x), (x, 0, 1))
Let .
Then let and substitute :
The integral of the exponential function is itself.
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | sin(x) sin(x) | cos(x)*E dx = C + e | /
sin(1) -1 + e
=
sin(1) -1 + e
-1 + exp(sin(1))
Use the examples entering the upper and lower limits of integration.