Integral of cos(x)*e^(sin(x)) dx
The solution
Detail solution
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
Now substitute u back in:
esin(x)
-
Add the constant of integration:
esin(x)+constant
The answer is:
esin(x)+constant
The answer (Indefinite)
[src]
/
|
| sin(x) sin(x)
| cos(x)*E dx = C + e
|
/
∫esin(x)cos(x)dx=C+esin(x)
The graph
−1+esin(1)
=
−1+esin(1)
Use the examples entering the upper and lower limits of integration.