Mister Exam

Other calculators


cos(x)*e^(sin(x))

Integral of cos(x)*e^(sin(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |          sin(x)   
 |  cos(x)*E       dx
 |                   
/                    
0                    
01esin(x)cos(x)dx\int\limits_{0}^{1} e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx
Integral(cos(x)*E^sin(x), (x, 0, 1))
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

    eudu\int e^{u}\, du

    1. The integral of the exponential function is itself.

      eudu=eu\int e^{u}\, du = e^{u}

    Now substitute uu back in:

    esin(x)e^{\sin{\left(x \right)}}

  2. Add the constant of integration:

    esin(x)+constante^{\sin{\left(x \right)}}+ \mathrm{constant}


The answer is:

esin(x)+constante^{\sin{\left(x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 |         sin(x)           sin(x)
 | cos(x)*E       dx = C + e      
 |                                
/                                 
esin(x)cos(x)dx=C+esin(x)\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = C + e^{\sin{\left(x \right)}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9003
The answer [src]
      sin(1)
-1 + e      
1+esin(1)-1 + e^{\sin{\left(1 \right)}}
=
=
      sin(1)
-1 + e      
1+esin(1)-1 + e^{\sin{\left(1 \right)}}
-1 + exp(sin(1))
Numerical answer [src]
1.31977682471585
1.31977682471585
The graph
Integral of cos(x)*e^(sin(x)) dx

    Use the examples entering the upper and lower limits of integration.