pi -- 2 / | | cos(x) - sin(x) | --------------- dx | 1 + sin(x) | / 0
Integral((cos(x) - sin(x))/(1 + sin(x)), (x, 0, pi/2))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ /x\ | x*tan|-| | cos(x) - sin(x) 2 x \2/ | --------------- dx = C - ---------- - ---------- - ---------- + log(1 + sin(x)) | 1 + sin(x) /x\ /x\ /x\ | 1 + tan|-| 1 + tan|-| 1 + tan|-| / \2/ \2/ \2/
pi 1 - -- + log(2) 2
=
pi 1 - -- + log(2) 2
1 - pi/2 + log(2)
Use the examples entering the upper and lower limits of integration.