Mister Exam

Other calculators

Integral of (cosx-sinx)/(1+sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                   
 --                   
 2                    
  /                   
 |                    
 |  cos(x) - sin(x)   
 |  --------------- dx
 |     1 + sin(x)     
 |                    
/                     
0                     
$$\int\limits_{0}^{\frac{\pi}{2}} \frac{- \sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(x \right)} + 1}\, dx$$
Integral((cos(x) - sin(x))/(1 + sin(x)), (x, 0, pi/2))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                         /x\                   
 |                                                     x*tan|-|                   
 | cos(x) - sin(x)              2            x              \2/                   
 | --------------- dx = C - ---------- - ---------- - ---------- + log(1 + sin(x))
 |    1 + sin(x)                   /x\          /x\          /x\                  
 |                          1 + tan|-|   1 + tan|-|   1 + tan|-|                  
/                                  \2/          \2/          \2/                  
$$\int \frac{- \sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(x \right)} + 1}\, dx = C - \frac{x \tan{\left(\frac{x}{2} \right)}}{\tan{\left(\frac{x}{2} \right)} + 1} - \frac{x}{\tan{\left(\frac{x}{2} \right)} + 1} + \log{\left(\sin{\left(x \right)} + 1 \right)} - \frac{2}{\tan{\left(\frac{x}{2} \right)} + 1}$$
The graph
The answer [src]
    pi         
1 - -- + log(2)
    2          
$$- \frac{\pi}{2} + \log{\left(2 \right)} + 1$$
=
=
    pi         
1 - -- + log(2)
    2          
$$- \frac{\pi}{2} + \log{\left(2 \right)} + 1$$
1 - pi/2 + log(2)
Numerical answer [src]
0.122350853765049
0.122350853765049

    Use the examples entering the upper and lower limits of integration.