Mister Exam

Other calculators

Integral of cosx/(3√sin^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |      cos(x)      
 |  ------------- dx
 |              2   
 |      ________    
 |  3*\/ sin(x)     
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{3 \left(\sqrt{\sin{\left(x \right)}}\right)^{2}}\, dx$$
Integral(cos(x)/((3*(sqrt(sin(x)))^2)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          /            2\
 |                           |    ________ |
 |     cos(x)             log\3*\/ sin(x)  /
 | ------------- dx = C + ------------------
 |             2                  3         
 |     ________                             
 | 3*\/ sin(x)                              
 |                                          
/                                           
$$\int \frac{\cos{\left(x \right)}}{3 \left(\sqrt{\sin{\left(x \right)}}\right)^{2}}\, dx = C + \frac{\log{\left(3 \left(\sqrt{\sin{\left(x \right)}}\right)^{2} \right)}}{3}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
14.6392807959079
14.6392807959079

    Use the examples entering the upper and lower limits of integration.