Mister Exam

Other calculators

Integral of cos(x/3)*sin(x/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     /x\    /x\   
 |  cos|-|*sin|-| dx
 |     \3/    \3/   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sin{\left(\frac{x}{3} \right)} \cos{\left(\frac{x}{3} \right)}\, dx$$
Integral(cos(x/3)*sin(x/3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #3

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            2/x\
 |                        3*cos |-|
 |    /x\    /x\                \3/
 | cos|-|*sin|-| dx = C - ---------
 |    \3/    \3/              2    
 |                                 
/                                  
$$\int \sin{\left(\frac{x}{3} \right)} \cos{\left(\frac{x}{3} \right)}\, dx = C - \frac{3 \cos^{2}{\left(\frac{x}{3} \right)}}{2}$$
The graph
The answer [src]
     2     
3*sin (1/3)
-----------
     2     
$$\frac{3 \sin^{2}{\left(\frac{1}{3} \right)}}{2}$$
=
=
     2     
3*sin (1/3)
-----------
     2     
$$\frac{3 \sin^{2}{\left(\frac{1}{3} \right)}}{2}$$
3*sin(1/3)^2/2
Numerical answer [src]
0.160584554417289
0.160584554417289

    Use the examples entering the upper and lower limits of integration.