Integral of cosx/sqrt(2sinx+1) dx
The solution
Detail solution
-
Let u=2sin(x)+1.
Then let du=2sin(x)+1cos(x)dx and substitute du:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
Now substitute u back in:
2sin(x)+1
-
Now simplify:
2sin(x)+1
-
Add the constant of integration:
2sin(x)+1+constant
The answer is:
2sin(x)+1+constant
The answer (Indefinite)
[src]
/
|
| cos(x) ______________
| ---------------- dx = C + \/ 2*sin(x) + 1
| ______________
| \/ 2*sin(x) + 1
|
/
∫2sin(x)+1cos(x)dx=C+2sin(x)+1
The graph
Use the examples entering the upper and lower limits of integration.