Mister Exam

Other calculators


cosx/(4+sin^2x)

Integral of cosx/(4+sin^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     cos(x)     
 |  ----------- dx
 |         2      
 |  4 + sin (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 4}\, dx$$
Integral(cos(x)/(4 + sin(x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                         /sin(x)\
 |                      atan|------|
 |    cos(x)                \  2   /
 | ----------- dx = C + ------------
 |        2                  2      
 | 4 + sin (x)                      
 |                                  
/                                   
$$\int \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 4}\, dx = C + \frac{\operatorname{atan}{\left(\frac{\sin{\left(x \right)}}{2} \right)}}{2}$$
The graph
The answer [src]
    /sin(1)\
atan|------|
    \  2   /
------------
     2      
$$\frac{\operatorname{atan}{\left(\frac{\sin{\left(1 \right)}}{2} \right)}}{2}$$
=
=
    /sin(1)\
atan|------|
    \  2   /
------------
     2      
$$\frac{\operatorname{atan}{\left(\frac{\sin{\left(1 \right)}}{2} \right)}}{2}$$
Numerical answer [src]
0.199126516684426
0.199126516684426
The graph
Integral of cosx/(4+sin^2x) dx

    Use the examples entering the upper and lower limits of integration.