Mister Exam

Other calculators

Integral of (cosx)/(5+4cosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  n                
  -                
  2                
  /                
 |                 
 |     cos(x)      
 |  ------------ dx
 |  5 + 4*cos(x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{\frac{n}{2}} \frac{\cos{\left(x \right)}}{4 \cos{\left(x \right)} + 5}\, dx$$
Integral(cos(x)/(5 + 4*cos(x)), (x, 0, n/2))
The answer (Indefinite) [src]
                               /   /x\\                 /x   pi\
                               |tan|-||                 |- - --|
  /                            |   \2/|                 |2   2 |
 |                       5*atan|------|       5*pi*floor|------|
 |    cos(x)                   \  3   /   x             \  pi  /
 | ------------ dx = C - -------------- + - - ------------------
 | 5 + 4*cos(x)                6          4           6         
 |                                                              
/                                                               
$$\int \frac{\cos{\left(x \right)}}{4 \cos{\left(x \right)} + 5}\, dx = C + \frac{x}{4} - \frac{5 \operatorname{atan}{\left(\frac{\tan{\left(\frac{x}{2} \right)}}{3} \right)}}{6} - \frac{5 \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor}{6}$$
The answer [src]
               /   /n\\                 /  pi   n\
               |tan|-||                 |- -- + -|
               |   \4/|                 |  2    4|
         5*atan|------|       5*pi*floor|--------|
  5*pi         \  3   /   n             \   pi   /
- ---- - -------------- + - - --------------------
   6           6          8            6          
$$\frac{n}{8} - \frac{5 \operatorname{atan}{\left(\frac{\tan{\left(\frac{n}{4} \right)}}{3} \right)}}{6} - \frac{5 \pi \left\lfloor{\frac{\frac{n}{4} - \frac{\pi}{2}}{\pi}}\right\rfloor}{6} - \frac{5 \pi}{6}$$
=
=
               /   /n\\                 /  pi   n\
               |tan|-||                 |- -- + -|
               |   \4/|                 |  2    4|
         5*atan|------|       5*pi*floor|--------|
  5*pi         \  3   /   n             \   pi   /
- ---- - -------------- + - - --------------------
   6           6          8            6          
$$\frac{n}{8} - \frac{5 \operatorname{atan}{\left(\frac{\tan{\left(\frac{n}{4} \right)}}{3} \right)}}{6} - \frac{5 \pi \left\lfloor{\frac{\frac{n}{4} - \frac{\pi}{2}}{\pi}}\right\rfloor}{6} - \frac{5 \pi}{6}$$
-5*pi/6 - 5*atan(tan(n/4)/3)/6 + n/8 - 5*pi*floor((-pi/2 + n/4)/pi)/6

    Use the examples entering the upper and lower limits of integration.