Mister Exam

Other calculators

Integral of (cos(x))/(cos(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |   cos(x)    
 |  -------- dx
 |  cos(2*x)   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\cos{\left(2 x \right)}}\, dx$$
Integral(cos(x)/cos(2*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                    /           
 |                    |            
 |  cos(x)            |  cos(x)    
 | -------- dx = C +  | -------- dx
 | cos(2*x)           | cos(2*x)   
 |                    |            
/                    /             
$$\int \frac{\cos{\left(x \right)}}{\cos{\left(2 x \right)}}\, dx = C + \int \frac{\cos{\left(x \right)}}{\cos{\left(2 x \right)}}\, dx$$
The answer [src]
  1            
  /            
 |             
 |   cos(x)    
 |  -------- dx
 |  cos(2*x)   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\cos{\left(2 x \right)}}\, dx$$
=
=
  1            
  /            
 |             
 |   cos(x)    
 |  -------- dx
 |  cos(2*x)   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\cos{\left(2 x \right)}}\, dx$$
Integral(cos(x)/cos(2*x), (x, 0, 1))
Numerical answer [src]
-0.125345238732127
-0.125345238732127

    Use the examples entering the upper and lower limits of integration.