Mister Exam

Other calculators


cos(2x-(pi/2))

Integral of cos(2x-(pi/2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     /      pi\   
 |  cos|2*x - --| dx
 |     \      2 /   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \cos{\left(2 x - \frac{\pi}{2} \right)}\, dx$$
Integral(cos(2*x - pi/2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    Method #2

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        Method #2

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          /      pi\
 |                        sin|2*x - --|
 |    /      pi\             \      2 /
 | cos|2*x - --| dx = C + -------------
 |    \      2 /                2      
 |                                     
/                                      
$${{\sin \left(2\,x-{{\pi}\over{2}}\right)}\over{2}}$$
The graph
The answer [src]
1   cos(2)
- - ------
2     2   
$${{\sin \left({{\pi}\over{2}}\right)}\over{2}}-{{\sin \left({{\pi-4 }\over{2}}\right)}\over{2}}$$
=
=
1   cos(2)
- - ------
2     2   
$$\frac{1}{2} - \frac{\cos{\left(2 \right)}}{2}$$
Numerical answer [src]
0.708073418273571
0.708073418273571
The graph
Integral of cos(2x-(pi/2)) dx

    Use the examples entering the upper and lower limits of integration.