Mister Exam

Other calculators


(cos^2)x

Integral of (cos^2)x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  cos (x)*x dx
 |              
/               
0               
$$\int\limits_{0}^{1} x \cos^{2}{\left(x \right)}\, dx$$
Integral(cos(x)^2*x, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                      
 |                       2       2    2       2    2                     
 |    2               sin (x)   x *cos (x)   x *sin (x)   x*cos(x)*sin(x)
 | cos (x)*x dx = C - ------- + ---------- + ---------- + ---------------
 |                       4          4            4               2       
/                                                                        
$$\int x \cos^{2}{\left(x \right)}\, dx = C + \frac{x^{2} \sin^{2}{\left(x \right)}}{4} + \frac{x^{2} \cos^{2}{\left(x \right)}}{4} + \frac{x \sin{\left(x \right)} \cos{\left(x \right)}}{2} - \frac{\sin^{2}{\left(x \right)}}{4}$$
The graph
The answer [src]
   2                   
cos (1)   cos(1)*sin(1)
------- + -------------
   4            2      
$$\frac{\cos^{2}{\left(1 \right)}}{4} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2}$$
=
=
   2                   
cos (1)   cos(1)*sin(1)
------- + -------------
   4            2      
$$\frac{\cos^{2}{\left(1 \right)}}{4} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2}$$
cos(1)^2/4 + cos(1)*sin(1)/2
Numerical answer [src]
0.300306002138028
0.300306002138028
The graph
Integral of (cos^2)x dx

    Use the examples entering the upper and lower limits of integration.