Integral of (cos^2)x dx
The solution
The answer (Indefinite)
[src]
/
| 2 2 2 2 2
| 2 sin (x) x *cos (x) x *sin (x) x*cos(x)*sin(x)
| cos (x)*x dx = C - ------- + ---------- + ---------- + ---------------
| 4 4 4 2
/
$$\int x \cos^{2}{\left(x \right)}\, dx = C + \frac{x^{2} \sin^{2}{\left(x \right)}}{4} + \frac{x^{2} \cos^{2}{\left(x \right)}}{4} + \frac{x \sin{\left(x \right)} \cos{\left(x \right)}}{2} - \frac{\sin^{2}{\left(x \right)}}{4}$$
2
cos (1) cos(1)*sin(1)
------- + -------------
4 2
$$\frac{\cos^{2}{\left(1 \right)}}{4} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2}$$
=
2
cos (1) cos(1)*sin(1)
------- + -------------
4 2
$$\frac{\cos^{2}{\left(1 \right)}}{4} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2}$$
cos(1)^2/4 + cos(1)*sin(1)/2
Use the examples entering the upper and lower limits of integration.