Mister Exam

Other calculators

Integral of cos^2(2x-(pi/4))-sin^2(2x-(pi/4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                                     
 --                                     
 24                                     
  /                                     
 |                                      
 |  /   2/      pi\      2/      pi\\   
 |  |cos |2*x - --| - sin |2*x - --|| dx
 |  \    \      4 /       \      4 //   
 |                                      
/                                       
pi                                      
--                                      
12                                      
$$\int\limits_{\frac{\pi}{12}}^{\frac{\pi}{24}} \left(- \sin^{2}{\left(2 x - \frac{\pi}{4} \right)} + \cos^{2}{\left(2 x - \frac{\pi}{4} \right)}\right)\, dx$$
Integral(cos(2*x - pi/4)^2 - sin(2*x - pi/4)^2, (x, pi/12, pi/24))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. Don't know the steps in finding this integral.

      But the integral is

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            /    3*pi\                                3/    3*pi\           
 |                                                        2*cot|x + ----|                           2*cot |x + ----|           
 | /   2/      pi\      2/      pi\\                           \     8  /                                 \     8  /           
 | |cos |2*x - --| - sin |2*x - --|| dx = C - --------------------------------------- + ---------------------------------------
 | \    \      4 /       \      4 //                   4/    3*pi\        2/    3*pi\            4/    3*pi\        2/    3*pi\
 |                                            2 + 2*cot |x + ----| + 4*cot |x + ----|   2 + 2*cot |x + ----| + 4*cot |x + ----|
/                                                       \     8  /         \     8  /             \     8  /         \     8  /
$$\int \left(- \sin^{2}{\left(2 x - \frac{\pi}{4} \right)} + \cos^{2}{\left(2 x - \frac{\pi}{4} \right)}\right)\, dx = C + \frac{2 \cot^{3}{\left(x + \frac{3 \pi}{8} \right)}}{2 \cot^{4}{\left(x + \frac{3 \pi}{8} \right)} + 4 \cot^{2}{\left(x + \frac{3 \pi}{8} \right)} + 2} - \frac{2 \cot{\left(x + \frac{3 \pi}{8} \right)}}{2 \cot^{4}{\left(x + \frac{3 \pi}{8} \right)} + 4 \cot^{2}{\left(x + \frac{3 \pi}{8} \right)} + 2}$$
The graph
The answer [src]
          /    ___     ___\ /  ___     ___\
          |  \/ 2    \/ 6 | |\/ 2    \/ 6 |
    ___   |- ----- + -----|*|----- + -----|
  \/ 3    \    4       4  / \  4       4  /
- ----- + ---------------------------------
    8                     2                
$$- \frac{\sqrt{3}}{8} + \frac{\left(- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}\right) \left(\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}\right)}{2}$$
=
=
          /    ___     ___\ /  ___     ___\
          |  \/ 2    \/ 6 | |\/ 2    \/ 6 |
    ___   |- ----- + -----|*|----- + -----|
  \/ 3    \    4       4  / \  4       4  /
- ----- + ---------------------------------
    8                     2                
$$- \frac{\sqrt{3}}{8} + \frac{\left(- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}\right) \left(\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}\right)}{2}$$
-sqrt(3)/8 + (-sqrt(2)/4 + sqrt(6)/4)*(sqrt(2)/4 + sqrt(6)/4)/2
Numerical answer [src]
-0.0915063509461097
-0.0915063509461097

    Use the examples entering the upper and lower limits of integration.