Mister Exam

Other calculators

Integral of cos^3(-4x)sin(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |     3                  
 |  cos (-4*x)*sin(4*x) dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \sin{\left(4 x \right)} \cos^{3}{\left(- 4 x \right)}\, dx$$
Integral(cos(-4*x)^3*sin(4*x), (x, 0, 1))
The graph
The answer [src]
        4   
1    cos (4)
-- - -------
16      16  
$$\frac{1}{16} - \frac{\cos^{4}{\left(4 \right)}}{16}$$
=
=
        4   
1    cos (4)
-- - -------
16      16  
$$\frac{1}{16} - \frac{\cos^{4}{\left(4 \right)}}{16}$$
1/16 - cos(4)^4/16
Numerical answer [src]
0.0510910907465456
0.0510910907465456

    Use the examples entering the upper and lower limits of integration.