Mister Exam

Other calculators

Integral of ((cos^3)2x)sin2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                        
 --                        
 8                         
  /                        
 |                         
 |     3                   
 |  cos (x)*2*x*sin(2*x) dx
 |                         
/                          
0                          
$$\int\limits_{0}^{\frac{\pi}{8}} x 2 \cos^{3}{\left(x \right)} \sin{\left(2 x \right)}\, dx$$
Integral(((cos(x)^3*2)*x)*sin(2*x), (x, 0, pi/8))
The answer (Indefinite) [src]
  /                                                                                              
 |                                     5             5           4                   2       3   
 |    3                          32*sin (x)   4*x*cos (x)   4*cos (x)*sin(x)   16*cos (x)*sin (x)
 | cos (x)*2*x*sin(2*x) dx = C + ---------- - ----------- + ---------------- + ------------------
 |                                   75            5               5                   15        
/                                                                                                
$$\int x 2 \cos^{3}{\left(x \right)} \sin{\left(2 x \right)}\, dx = C - \frac{4 x \cos^{5}{\left(x \right)}}{5} + \frac{32 \sin^{5}{\left(x \right)}}{75} + \frac{16 \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}}{15} + \frac{4 \sin{\left(x \right)} \cos^{4}{\left(x \right)}}{5}$$
Numerical answer [src]
0.0661112640473332
0.0661112640473332

    Use the examples entering the upper and lower limits of integration.