Mister Exam

Other calculators


cos^4xsin^5xdx

Integral of cos^4xsin^5xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |     4       5        
 |  cos (x)*sin (x)*1 dx
 |                      
/                       
0                       
01cos4(x)sin5(x)1dx\int\limits_{0}^{1} \cos^{4}{\left(x \right)} \sin^{5}{\left(x \right)} 1\, dx
Integral(cos(x)^4*sin(x)^5*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    cos4(x)sin5(x)1=(1cos2(x))2sin(x)cos4(x)\cos^{4}{\left(x \right)} \sin^{5}{\left(x \right)} 1 = \left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{4}{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(x)u = \cos{\left(x \right)}.

      Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

      (u8+2u6u4)du\int \left(- u^{8} + 2 u^{6} - u^{4}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          So, the result is: u99- \frac{u^{9}}{9}

        1. The integral of a constant times a function is the constant times the integral of the function:

          2u6du=2u6du\int 2 u^{6}\, du = 2 \int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          So, the result is: 2u77\frac{2 u^{7}}{7}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u55- \frac{u^{5}}{5}

        The result is: u99+2u77u55- \frac{u^{9}}{9} + \frac{2 u^{7}}{7} - \frac{u^{5}}{5}

      Now substitute uu back in:

      cos9(x)9+2cos7(x)7cos5(x)5- \frac{\cos^{9}{\left(x \right)}}{9} + \frac{2 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x))2sin(x)cos4(x)=sin(x)cos8(x)2sin(x)cos6(x)+sin(x)cos4(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{4}{\left(x \right)} = \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + \sin{\left(x \right)} \cos^{4}{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u8du\int u^{8}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          So, the result is: u99- \frac{u^{9}}{9}

        Now substitute uu back in:

        cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2sin(x)cos6(x))dx=2sin(x)cos6(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u6du\int u^{6}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: 2cos7(x)7\frac{2 \cos^{7}{\left(x \right)}}{7}

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u4du\int u^{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u55- \frac{u^{5}}{5}

        Now substitute uu back in:

        cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

      The result is: cos9(x)9+2cos7(x)7cos5(x)5- \frac{\cos^{9}{\left(x \right)}}{9} + \frac{2 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

    Method #3

    1. Rewrite the integrand:

      (1cos2(x))2sin(x)cos4(x)=sin(x)cos8(x)2sin(x)cos6(x)+sin(x)cos4(x)\left(1 - \cos^{2}{\left(x \right)}\right)^{2} \sin{\left(x \right)} \cos^{4}{\left(x \right)} = \sin{\left(x \right)} \cos^{8}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{6}{\left(x \right)} + \sin{\left(x \right)} \cos^{4}{\left(x \right)}

    2. Integrate term-by-term:

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u8du\int u^{8}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u8)du=u8du\int \left(- u^{8}\right)\, du = - \int u^{8}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          So, the result is: u99- \frac{u^{9}}{9}

        Now substitute uu back in:

        cos9(x)9- \frac{\cos^{9}{\left(x \right)}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2sin(x)cos6(x))dx=2sin(x)cos6(x)dx\int \left(- 2 \sin{\left(x \right)} \cos^{6}{\left(x \right)}\right)\, dx = - 2 \int \sin{\left(x \right)} \cos^{6}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u6du\int u^{6}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

            So, the result is: u77- \frac{u^{7}}{7}

          Now substitute uu back in:

          cos7(x)7- \frac{\cos^{7}{\left(x \right)}}{7}

        So, the result is: 2cos7(x)7\frac{2 \cos^{7}{\left(x \right)}}{7}

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u4du\int u^{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          So, the result is: u55- \frac{u^{5}}{5}

        Now substitute uu back in:

        cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

      The result is: cos9(x)9+2cos7(x)7cos5(x)5- \frac{\cos^{9}{\left(x \right)}}{9} + \frac{2 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}

  3. Now simplify:

    (35sin4(x)+20sin2(x)+8)cos5(x)315- \frac{\left(35 \sin^{4}{\left(x \right)} + 20 \sin^{2}{\left(x \right)} + 8\right) \cos^{5}{\left(x \right)}}{315}

  4. Add the constant of integration:

    (35sin4(x)+20sin2(x)+8)cos5(x)315+constant- \frac{\left(35 \sin^{4}{\left(x \right)} + 20 \sin^{2}{\left(x \right)} + 8\right) \cos^{5}{\left(x \right)}}{315}+ \mathrm{constant}


The answer is:

(35sin4(x)+20sin2(x)+8)cos5(x)315+constant- \frac{\left(35 \sin^{4}{\left(x \right)} + 20 \sin^{2}{\left(x \right)} + 8\right) \cos^{5}{\left(x \right)}}{315}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                        
 |                               5         9           7   
 |    4       5               cos (x)   cos (x)   2*cos (x)
 | cos (x)*sin (x)*1 dx = C - ------- - ------- + ---------
 |                               5         9          7    
/                                                          
cos4(x)sin5(x)1dx=Ccos9(x)9+2cos7(x)7cos5(x)5\int \cos^{4}{\left(x \right)} \sin^{5}{\left(x \right)} 1\, dx = C - \frac{\cos^{9}{\left(x \right)}}{9} + \frac{2 \cos^{7}{\left(x \right)}}{7} - \frac{\cos^{5}{\left(x \right)}}{5}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.10-0.10
The answer [src]
         5         9           7   
 8    cos (1)   cos (1)   2*cos (1)
--- - ------- - ------- + ---------
315      5         9          7    
cos5(1)5cos9(1)9+2cos7(1)7+8315- \frac{\cos^{5}{\left(1 \right)}}{5} - \frac{\cos^{9}{\left(1 \right)}}{9} + \frac{2 \cos^{7}{\left(1 \right)}}{7} + \frac{8}{315}
=
=
         5         9           7   
 8    cos (1)   cos (1)   2*cos (1)
--- - ------- - ------- + ---------
315      5         9          7    
cos5(1)5cos9(1)9+2cos7(1)7+8315- \frac{\cos^{5}{\left(1 \right)}}{5} - \frac{\cos^{9}{\left(1 \right)}}{9} + \frac{2 \cos^{7}{\left(1 \right)}}{7} + \frac{8}{315}
Numerical answer [src]
0.0195923055782434
0.0195923055782434
The graph
Integral of cos^4xsin^5xdx dx

    Use the examples entering the upper and lower limits of integration.