Mister Exam

Other calculators

Integral of cos^4x*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     4             
 |  cos (x)*sin(x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx$$
Integral(cos(x)^4*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                            5   
 |    4                    cos (x)
 | cos (x)*sin(x) dx = C - -------
 |                            5   
/                                 
$$\int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = C - \frac{\cos^{5}{\left(x \right)}}{5}$$
The graph
The answer [src]
       5   
1   cos (1)
- - -------
5      5   
$$\frac{1}{5} - \frac{\cos^{5}{\left(1 \right)}}{5}$$
=
=
       5   
1   cos (1)
- - -------
5      5   
$$\frac{1}{5} - \frac{\cos^{5}{\left(1 \right)}}{5}$$
1/5 - cos(1)^5/5
Numerical answer [src]
0.19079096548572
0.19079096548572

    Use the examples entering the upper and lower limits of integration.