1 / | | 4 | cos (x)*sin(x) dx | / 0
Integral(cos(x)^4*sin(x), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 5 | 4 cos (x) | cos (x)*sin(x) dx = C - ------- | 5 /
5 1 cos (1) - - ------- 5 5
=
5 1 cos (1) - - ------- 5 5
1/5 - cos(1)^5/5
Use the examples entering the upper and lower limits of integration.