Integral of cos(3/2x-1)dx dx
The solution
Detail solution
-
Let u=23x−1.
Then let du=23dx and substitute 32du:
∫32cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=32∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 32sin(u)
Now substitute u back in:
32sin(23x−1)
-
Now simplify:
32sin(23x−1)
-
Add the constant of integration:
32sin(23x−1)+constant
The answer is:
32sin(23x−1)+constant
The answer (Indefinite)
[src]
/ /3*x \
| 2*sin|--- - 1|
| /3*x \ \ 2 /
| cos|--- - 1| dx = C + --------------
| \ 2 / 3
|
/
∫cos(23x−1)dx=C+32sin(23x−1)
The graph
2*sin(1) 2*sin(1/2)
-------- + ----------
3 3
32sin(21)+32sin(1)
=
2*sin(1) 2*sin(1/2)
-------- + ----------
3 3
32sin(21)+32sin(1)
2*sin(1)/3 + 2*sin(1/2)/3
Use the examples entering the upper and lower limits of integration.