Mister Exam

Other calculators

Integral of cos(3/2x-1)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     /3*x    \   
 |  cos|--- - 1| dx
 |     \ 2     /   
 |                 
/                  
0                  
01cos(3x21)dx\int\limits_{0}^{1} \cos{\left(\frac{3 x}{2} - 1 \right)}\, dx
Integral(cos(3*x/2 - 1), (x, 0, 1))
Detail solution
  1. Let u=3x21u = \frac{3 x}{2} - 1.

    Then let du=3dx2du = \frac{3 dx}{2} and substitute 2du3\frac{2 du}{3}:

    2cos(u)3du\int \frac{2 \cos{\left(u \right)}}{3}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      cos(u)du=2cos(u)du3\int \cos{\left(u \right)}\, du = \frac{2 \int \cos{\left(u \right)}\, du}{3}

      1. The integral of cosine is sine:

        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

      So, the result is: 2sin(u)3\frac{2 \sin{\left(u \right)}}{3}

    Now substitute uu back in:

    2sin(3x21)3\frac{2 \sin{\left(\frac{3 x}{2} - 1 \right)}}{3}

  2. Now simplify:

    2sin(3x21)3\frac{2 \sin{\left(\frac{3 x}{2} - 1 \right)}}{3}

  3. Add the constant of integration:

    2sin(3x21)3+constant\frac{2 \sin{\left(\frac{3 x}{2} - 1 \right)}}{3}+ \mathrm{constant}


The answer is:

2sin(3x21)3+constant\frac{2 \sin{\left(\frac{3 x}{2} - 1 \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           /3*x    \
 |                       2*sin|--- - 1|
 |    /3*x    \               \ 2     /
 | cos|--- - 1| dx = C + --------------
 |    \ 2     /                3       
 |                                     
/                                      
cos(3x21)dx=C+2sin(3x21)3\int \cos{\left(\frac{3 x}{2} - 1 \right)}\, dx = C + \frac{2 \sin{\left(\frac{3 x}{2} - 1 \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
2*sin(1)   2*sin(1/2)
-------- + ----------
   3           3     
2sin(12)3+2sin(1)3\frac{2 \sin{\left(\frac{1}{2} \right)}}{3} + \frac{2 \sin{\left(1 \right)}}{3}
=
=
2*sin(1)   2*sin(1/2)
-------- + ----------
   3           3     
2sin(12)3+2sin(1)3\frac{2 \sin{\left(\frac{1}{2} \right)}}{3} + \frac{2 \sin{\left(1 \right)}}{3}
2*sin(1)/3 + 2*sin(1/2)/3
Numerical answer [src]
0.880597682274733
0.880597682274733

    Use the examples entering the upper and lower limits of integration.