Mister Exam

Other calculators

Integral of cos(3/2x-1)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     /3*x    \   
 |  cos|--- - 1| dx
 |     \ 2     /   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \cos{\left(\frac{3 x}{2} - 1 \right)}\, dx$$
Integral(cos(3*x/2 - 1), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           /3*x    \
 |                       2*sin|--- - 1|
 |    /3*x    \               \ 2     /
 | cos|--- - 1| dx = C + --------------
 |    \ 2     /                3       
 |                                     
/                                      
$$\int \cos{\left(\frac{3 x}{2} - 1 \right)}\, dx = C + \frac{2 \sin{\left(\frac{3 x}{2} - 1 \right)}}{3}$$
The graph
The answer [src]
2*sin(1)   2*sin(1/2)
-------- + ----------
   3           3     
$$\frac{2 \sin{\left(\frac{1}{2} \right)}}{3} + \frac{2 \sin{\left(1 \right)}}{3}$$
=
=
2*sin(1)   2*sin(1/2)
-------- + ----------
   3           3     
$$\frac{2 \sin{\left(\frac{1}{2} \right)}}{3} + \frac{2 \sin{\left(1 \right)}}{3}$$
2*sin(1)/3 + 2*sin(1/2)/3
Numerical answer [src]
0.880597682274733
0.880597682274733

    Use the examples entering the upper and lower limits of integration.