Mister Exam

Other calculators


(cos^2ydy)sin^4y

Integral of (cos^2ydy)sin^4y dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |     2         4      
 |  cos (y)*1*sin (y) dy
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \cos^{2}{\left(y \right)} 1 \sin^{4}{\left(y \right)}\, dy$$
Integral(cos(y)^2*1*sin(y)^4, (y, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Rewrite the integrand:

          2. Let .

            Then let and substitute :

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              The result is:

            Now substitute back in:

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Rewrite the integrand:

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. Let .

                Then let and substitute :

                1. The integral of a constant times a function is the constant times the integral of the function:

                  1. The integral of cosine is sine:

                  So, the result is:

                Now substitute back in:

              So, the result is:

            1. The integral of a constant is the constant times the variable of integration:

            The result is:

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            The result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of cosine is sine:

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of a constant is the constant times the variable of integration:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            The result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of cosine is sine:

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                               3                     
 |    2         4             sin (2*y)   sin(4*y)   y 
 | cos (y)*1*sin (y) dy = C - --------- - -------- + --
 |                                48         64      16
/                                                      
$$\int \cos^{2}{\left(y \right)} 1 \sin^{4}{\left(y \right)}\, dy = C + \frac{y}{16} - \frac{\sin^{3}{\left(2 y \right)}}{48} - \frac{\sin{\left(4 y \right)}}{64}$$
The graph
The answer [src]
                        3                5          
1    cos(1)*sin(1)   sin (1)*cos(1)   sin (1)*cos(1)
-- - ------------- - -------------- + --------------
16         16              24               6       
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{16} - \frac{\sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{24} + \frac{\sin^{5}{\left(1 \right)} \cos{\left(1 \right)}}{6} + \frac{1}{16}$$
=
=
                        3                5          
1    cos(1)*sin(1)   sin (1)*cos(1)   sin (1)*cos(1)
-- - ------------- - -------------- + --------------
16         16              24               6       
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{16} - \frac{\sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{24} + \frac{\sin^{5}{\left(1 \right)} \cos{\left(1 \right)}}{6} + \frac{1}{16}$$
Numerical answer [src]
0.0586619776419157
0.0586619776419157
The graph
Integral of (cos^2ydy)sin^4y dx

    Use the examples entering the upper and lower limits of integration.