Mister Exam

Integral of cos^27x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |     27      
 |  cos  (x) dx
 |             
/              
2              
2cos27(x)dx\int\limits_{2}^{\infty} \cos^{27}{\left(x \right)}\, dx
Integral(cos(x)^27, (x, 2, oo))
Detail solution
  1. Rewrite the integrand:

    cos27(x)=(1sin2(x))13cos(x)\cos^{27}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{13} \cos{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (1sin2(x))13cos(x)=sin26(x)cos(x)+13sin24(x)cos(x)78sin22(x)cos(x)+286sin20(x)cos(x)715sin18(x)cos(x)+1287sin16(x)cos(x)1716sin14(x)cos(x)+1716sin12(x)cos(x)1287sin10(x)cos(x)+715sin8(x)cos(x)286sin6(x)cos(x)+78sin4(x)cos(x)13sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{13} \cos{\left(x \right)} = - \sin^{26}{\left(x \right)} \cos{\left(x \right)} + 13 \sin^{24}{\left(x \right)} \cos{\left(x \right)} - 78 \sin^{22}{\left(x \right)} \cos{\left(x \right)} + 286 \sin^{20}{\left(x \right)} \cos{\left(x \right)} - 715 \sin^{18}{\left(x \right)} \cos{\left(x \right)} + 1287 \sin^{16}{\left(x \right)} \cos{\left(x \right)} - 1716 \sin^{14}{\left(x \right)} \cos{\left(x \right)} + 1716 \sin^{12}{\left(x \right)} \cos{\left(x \right)} - 1287 \sin^{10}{\left(x \right)} \cos{\left(x \right)} + 715 \sin^{8}{\left(x \right)} \cos{\left(x \right)} - 286 \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 78 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 13 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin26(x)cos(x))dx=sin26(x)cos(x)dx\int \left(- \sin^{26}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{26}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u26du\int u^{26}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u26du=u2727\int u^{26}\, du = \frac{u^{27}}{27}

          Now substitute uu back in:

          sin27(x)27\frac{\sin^{27}{\left(x \right)}}{27}

        So, the result is: sin27(x)27- \frac{\sin^{27}{\left(x \right)}}{27}

      1. The integral of a constant times a function is the constant times the integral of the function:

        13sin24(x)cos(x)dx=13sin24(x)cos(x)dx\int 13 \sin^{24}{\left(x \right)} \cos{\left(x \right)}\, dx = 13 \int \sin^{24}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u24du\int u^{24}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u24du=u2525\int u^{24}\, du = \frac{u^{25}}{25}

          Now substitute uu back in:

          sin25(x)25\frac{\sin^{25}{\left(x \right)}}{25}

        So, the result is: 13sin25(x)25\frac{13 \sin^{25}{\left(x \right)}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (78sin22(x)cos(x))dx=78sin22(x)cos(x)dx\int \left(- 78 \sin^{22}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 78 \int \sin^{22}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u22du\int u^{22}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u22du=u2323\int u^{22}\, du = \frac{u^{23}}{23}

          Now substitute uu back in:

          sin23(x)23\frac{\sin^{23}{\left(x \right)}}{23}

        So, the result is: 78sin23(x)23- \frac{78 \sin^{23}{\left(x \right)}}{23}

      1. The integral of a constant times a function is the constant times the integral of the function:

        286sin20(x)cos(x)dx=286sin20(x)cos(x)dx\int 286 \sin^{20}{\left(x \right)} \cos{\left(x \right)}\, dx = 286 \int \sin^{20}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u20du\int u^{20}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u20du=u2121\int u^{20}\, du = \frac{u^{21}}{21}

          Now substitute uu back in:

          sin21(x)21\frac{\sin^{21}{\left(x \right)}}{21}

        So, the result is: 286sin21(x)21\frac{286 \sin^{21}{\left(x \right)}}{21}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (715sin18(x)cos(x))dx=715sin18(x)cos(x)dx\int \left(- 715 \sin^{18}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 715 \int \sin^{18}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u18du\int u^{18}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u18du=u1919\int u^{18}\, du = \frac{u^{19}}{19}

          Now substitute uu back in:

          sin19(x)19\frac{\sin^{19}{\left(x \right)}}{19}

        So, the result is: 715sin19(x)19- \frac{715 \sin^{19}{\left(x \right)}}{19}

      1. The integral of a constant times a function is the constant times the integral of the function:

        1287sin16(x)cos(x)dx=1287sin16(x)cos(x)dx\int 1287 \sin^{16}{\left(x \right)} \cos{\left(x \right)}\, dx = 1287 \int \sin^{16}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u16du\int u^{16}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u16du=u1717\int u^{16}\, du = \frac{u^{17}}{17}

          Now substitute uu back in:

          sin17(x)17\frac{\sin^{17}{\left(x \right)}}{17}

        So, the result is: 1287sin17(x)17\frac{1287 \sin^{17}{\left(x \right)}}{17}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1716sin14(x)cos(x))dx=1716sin14(x)cos(x)dx\int \left(- 1716 \sin^{14}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 1716 \int \sin^{14}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u14du\int u^{14}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u14du=u1515\int u^{14}\, du = \frac{u^{15}}{15}

          Now substitute uu back in:

          sin15(x)15\frac{\sin^{15}{\left(x \right)}}{15}

        So, the result is: 572sin15(x)5- \frac{572 \sin^{15}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        1716sin12(x)cos(x)dx=1716sin12(x)cos(x)dx\int 1716 \sin^{12}{\left(x \right)} \cos{\left(x \right)}\, dx = 1716 \int \sin^{12}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u12du\int u^{12}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u12du=u1313\int u^{12}\, du = \frac{u^{13}}{13}

          Now substitute uu back in:

          sin13(x)13\frac{\sin^{13}{\left(x \right)}}{13}

        So, the result is: 132sin13(x)132 \sin^{13}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1287sin10(x)cos(x))dx=1287sin10(x)cos(x)dx\int \left(- 1287 \sin^{10}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 1287 \int \sin^{10}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u10du\int u^{10}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

          Now substitute uu back in:

          sin11(x)11\frac{\sin^{11}{\left(x \right)}}{11}

        So, the result is: 117sin11(x)- 117 \sin^{11}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        715sin8(x)cos(x)dx=715sin8(x)cos(x)dx\int 715 \sin^{8}{\left(x \right)} \cos{\left(x \right)}\, dx = 715 \int \sin^{8}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u8du\int u^{8}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          Now substitute uu back in:

          sin9(x)9\frac{\sin^{9}{\left(x \right)}}{9}

        So, the result is: 715sin9(x)9\frac{715 \sin^{9}{\left(x \right)}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (286sin6(x)cos(x))dx=286sin6(x)cos(x)dx\int \left(- 286 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 286 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u6du\int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          Now substitute uu back in:

          sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

        So, the result is: 286sin7(x)7- \frac{286 \sin^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        78sin4(x)cos(x)dx=78sin4(x)cos(x)dx\int 78 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 78 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u4du\int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          Now substitute uu back in:

          sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

        So, the result is: 78sin5(x)5\frac{78 \sin^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (13sin2(x)cos(x))dx=13sin2(x)cos(x)dx\int \left(- 13 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 13 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u2du\int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          Now substitute uu back in:

          sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

        So, the result is: 13sin3(x)3- \frac{13 \sin^{3}{\left(x \right)}}{3}

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      The result is: sin27(x)27+13sin25(x)2578sin23(x)23+286sin21(x)21715sin19(x)19+1287sin17(x)17572sin15(x)5+132sin13(x)117sin11(x)+715sin9(x)9286sin7(x)7+78sin5(x)513sin3(x)3+sin(x)- \frac{\sin^{27}{\left(x \right)}}{27} + \frac{13 \sin^{25}{\left(x \right)}}{25} - \frac{78 \sin^{23}{\left(x \right)}}{23} + \frac{286 \sin^{21}{\left(x \right)}}{21} - \frac{715 \sin^{19}{\left(x \right)}}{19} + \frac{1287 \sin^{17}{\left(x \right)}}{17} - \frac{572 \sin^{15}{\left(x \right)}}{5} + 132 \sin^{13}{\left(x \right)} - 117 \sin^{11}{\left(x \right)} + \frac{715 \sin^{9}{\left(x \right)}}{9} - \frac{286 \sin^{7}{\left(x \right)}}{7} + \frac{78 \sin^{5}{\left(x \right)}}{5} - \frac{13 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      (1sin2(x))13cos(x)=sin26(x)cos(x)+13sin24(x)cos(x)78sin22(x)cos(x)+286sin20(x)cos(x)715sin18(x)cos(x)+1287sin16(x)cos(x)1716sin14(x)cos(x)+1716sin12(x)cos(x)1287sin10(x)cos(x)+715sin8(x)cos(x)286sin6(x)cos(x)+78sin4(x)cos(x)13sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{13} \cos{\left(x \right)} = - \sin^{26}{\left(x \right)} \cos{\left(x \right)} + 13 \sin^{24}{\left(x \right)} \cos{\left(x \right)} - 78 \sin^{22}{\left(x \right)} \cos{\left(x \right)} + 286 \sin^{20}{\left(x \right)} \cos{\left(x \right)} - 715 \sin^{18}{\left(x \right)} \cos{\left(x \right)} + 1287 \sin^{16}{\left(x \right)} \cos{\left(x \right)} - 1716 \sin^{14}{\left(x \right)} \cos{\left(x \right)} + 1716 \sin^{12}{\left(x \right)} \cos{\left(x \right)} - 1287 \sin^{10}{\left(x \right)} \cos{\left(x \right)} + 715 \sin^{8}{\left(x \right)} \cos{\left(x \right)} - 286 \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 78 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 13 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin26(x)cos(x))dx=sin26(x)cos(x)dx\int \left(- \sin^{26}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{26}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u26du\int u^{26}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u26du=u2727\int u^{26}\, du = \frac{u^{27}}{27}

          Now substitute uu back in:

          sin27(x)27\frac{\sin^{27}{\left(x \right)}}{27}

        So, the result is: sin27(x)27- \frac{\sin^{27}{\left(x \right)}}{27}

      1. The integral of a constant times a function is the constant times the integral of the function:

        13sin24(x)cos(x)dx=13sin24(x)cos(x)dx\int 13 \sin^{24}{\left(x \right)} \cos{\left(x \right)}\, dx = 13 \int \sin^{24}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u24du\int u^{24}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u24du=u2525\int u^{24}\, du = \frac{u^{25}}{25}

          Now substitute uu back in:

          sin25(x)25\frac{\sin^{25}{\left(x \right)}}{25}

        So, the result is: 13sin25(x)25\frac{13 \sin^{25}{\left(x \right)}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (78sin22(x)cos(x))dx=78sin22(x)cos(x)dx\int \left(- 78 \sin^{22}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 78 \int \sin^{22}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u22du\int u^{22}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u22du=u2323\int u^{22}\, du = \frac{u^{23}}{23}

          Now substitute uu back in:

          sin23(x)23\frac{\sin^{23}{\left(x \right)}}{23}

        So, the result is: 78sin23(x)23- \frac{78 \sin^{23}{\left(x \right)}}{23}

      1. The integral of a constant times a function is the constant times the integral of the function:

        286sin20(x)cos(x)dx=286sin20(x)cos(x)dx\int 286 \sin^{20}{\left(x \right)} \cos{\left(x \right)}\, dx = 286 \int \sin^{20}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u20du\int u^{20}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u20du=u2121\int u^{20}\, du = \frac{u^{21}}{21}

          Now substitute uu back in:

          sin21(x)21\frac{\sin^{21}{\left(x \right)}}{21}

        So, the result is: 286sin21(x)21\frac{286 \sin^{21}{\left(x \right)}}{21}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (715sin18(x)cos(x))dx=715sin18(x)cos(x)dx\int \left(- 715 \sin^{18}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 715 \int \sin^{18}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u18du\int u^{18}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u18du=u1919\int u^{18}\, du = \frac{u^{19}}{19}

          Now substitute uu back in:

          sin19(x)19\frac{\sin^{19}{\left(x \right)}}{19}

        So, the result is: 715sin19(x)19- \frac{715 \sin^{19}{\left(x \right)}}{19}

      1. The integral of a constant times a function is the constant times the integral of the function:

        1287sin16(x)cos(x)dx=1287sin16(x)cos(x)dx\int 1287 \sin^{16}{\left(x \right)} \cos{\left(x \right)}\, dx = 1287 \int \sin^{16}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u16du\int u^{16}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u16du=u1717\int u^{16}\, du = \frac{u^{17}}{17}

          Now substitute uu back in:

          sin17(x)17\frac{\sin^{17}{\left(x \right)}}{17}

        So, the result is: 1287sin17(x)17\frac{1287 \sin^{17}{\left(x \right)}}{17}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1716sin14(x)cos(x))dx=1716sin14(x)cos(x)dx\int \left(- 1716 \sin^{14}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 1716 \int \sin^{14}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u14du\int u^{14}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u14du=u1515\int u^{14}\, du = \frac{u^{15}}{15}

          Now substitute uu back in:

          sin15(x)15\frac{\sin^{15}{\left(x \right)}}{15}

        So, the result is: 572sin15(x)5- \frac{572 \sin^{15}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        1716sin12(x)cos(x)dx=1716sin12(x)cos(x)dx\int 1716 \sin^{12}{\left(x \right)} \cos{\left(x \right)}\, dx = 1716 \int \sin^{12}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u12du\int u^{12}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u12du=u1313\int u^{12}\, du = \frac{u^{13}}{13}

          Now substitute uu back in:

          sin13(x)13\frac{\sin^{13}{\left(x \right)}}{13}

        So, the result is: 132sin13(x)132 \sin^{13}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1287sin10(x)cos(x))dx=1287sin10(x)cos(x)dx\int \left(- 1287 \sin^{10}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 1287 \int \sin^{10}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u10du\int u^{10}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

          Now substitute uu back in:

          sin11(x)11\frac{\sin^{11}{\left(x \right)}}{11}

        So, the result is: 117sin11(x)- 117 \sin^{11}{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        715sin8(x)cos(x)dx=715sin8(x)cos(x)dx\int 715 \sin^{8}{\left(x \right)} \cos{\left(x \right)}\, dx = 715 \int \sin^{8}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u8du\int u^{8}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

          Now substitute uu back in:

          sin9(x)9\frac{\sin^{9}{\left(x \right)}}{9}

        So, the result is: 715sin9(x)9\frac{715 \sin^{9}{\left(x \right)}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (286sin6(x)cos(x))dx=286sin6(x)cos(x)dx\int \left(- 286 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 286 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u6du\int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          Now substitute uu back in:

          sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

        So, the result is: 286sin7(x)7- \frac{286 \sin^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        78sin4(x)cos(x)dx=78sin4(x)cos(x)dx\int 78 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 78 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u4du\int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          Now substitute uu back in:

          sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

        So, the result is: 78sin5(x)5\frac{78 \sin^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (13sin2(x)cos(x))dx=13sin2(x)cos(x)dx\int \left(- 13 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 13 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u2du\int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          Now substitute uu back in:

          sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

        So, the result is: 13sin3(x)3- \frac{13 \sin^{3}{\left(x \right)}}{3}

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      The result is: sin27(x)27+13sin25(x)2578sin23(x)23+286sin21(x)21715sin19(x)19+1287sin17(x)17572sin15(x)5+132sin13(x)117sin11(x)+715sin9(x)9286sin7(x)7+78sin5(x)513sin3(x)3+sin(x)- \frac{\sin^{27}{\left(x \right)}}{27} + \frac{13 \sin^{25}{\left(x \right)}}{25} - \frac{78 \sin^{23}{\left(x \right)}}{23} + \frac{286 \sin^{21}{\left(x \right)}}{21} - \frac{715 \sin^{19}{\left(x \right)}}{19} + \frac{1287 \sin^{17}{\left(x \right)}}{17} - \frac{572 \sin^{15}{\left(x \right)}}{5} + 132 \sin^{13}{\left(x \right)} - 117 \sin^{11}{\left(x \right)} + \frac{715 \sin^{9}{\left(x \right)}}{9} - \frac{286 \sin^{7}{\left(x \right)}}{7} + \frac{78 \sin^{5}{\left(x \right)}}{5} - \frac{13 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

  3. Now simplify:

    (1300075sin26(x)+18253053sin24(x)119041650sin22(x)+478056150sin20(x)1320944625sin18(x)+2657429775sin16(x)4015671660sin14(x)+4633467300sin12(x)4106936925sin10(x)+2788660875sin8(x)1434168450sin6(x)+547591590sin4(x)152108775sin2(x)+35102025)sin(x)35102025\frac{\left(- 1300075 \sin^{26}{\left(x \right)} + 18253053 \sin^{24}{\left(x \right)} - 119041650 \sin^{22}{\left(x \right)} + 478056150 \sin^{20}{\left(x \right)} - 1320944625 \sin^{18}{\left(x \right)} + 2657429775 \sin^{16}{\left(x \right)} - 4015671660 \sin^{14}{\left(x \right)} + 4633467300 \sin^{12}{\left(x \right)} - 4106936925 \sin^{10}{\left(x \right)} + 2788660875 \sin^{8}{\left(x \right)} - 1434168450 \sin^{6}{\left(x \right)} + 547591590 \sin^{4}{\left(x \right)} - 152108775 \sin^{2}{\left(x \right)} + 35102025\right) \sin{\left(x \right)}}{35102025}

  4. Add the constant of integration:

    (1300075sin26(x)+18253053sin24(x)119041650sin22(x)+478056150sin20(x)1320944625sin18(x)+2657429775sin16(x)4015671660sin14(x)+4633467300sin12(x)4106936925sin10(x)+2788660875sin8(x)1434168450sin6(x)+547591590sin4(x)152108775sin2(x)+35102025)sin(x)35102025+constant\frac{\left(- 1300075 \sin^{26}{\left(x \right)} + 18253053 \sin^{24}{\left(x \right)} - 119041650 \sin^{22}{\left(x \right)} + 478056150 \sin^{20}{\left(x \right)} - 1320944625 \sin^{18}{\left(x \right)} + 2657429775 \sin^{16}{\left(x \right)} - 4015671660 \sin^{14}{\left(x \right)} + 4633467300 \sin^{12}{\left(x \right)} - 4106936925 \sin^{10}{\left(x \right)} + 2788660875 \sin^{8}{\left(x \right)} - 1434168450 \sin^{6}{\left(x \right)} + 547591590 \sin^{4}{\left(x \right)} - 152108775 \sin^{2}{\left(x \right)} + 35102025\right) \sin{\left(x \right)}}{35102025}+ \mathrm{constant}


The answer is:

(1300075sin26(x)+18253053sin24(x)119041650sin22(x)+478056150sin20(x)1320944625sin18(x)+2657429775sin16(x)4015671660sin14(x)+4633467300sin12(x)4106936925sin10(x)+2788660875sin8(x)1434168450sin6(x)+547591590sin4(x)152108775sin2(x)+35102025)sin(x)35102025+constant\frac{\left(- 1300075 \sin^{26}{\left(x \right)} + 18253053 \sin^{24}{\left(x \right)} - 119041650 \sin^{22}{\left(x \right)} + 478056150 \sin^{20}{\left(x \right)} - 1320944625 \sin^{18}{\left(x \right)} + 2657429775 \sin^{16}{\left(x \right)} - 4015671660 \sin^{14}{\left(x \right)} + 4633467300 \sin^{12}{\left(x \right)} - 4106936925 \sin^{10}{\left(x \right)} + 2788660875 \sin^{8}{\left(x \right)} - 1434168450 \sin^{6}{\left(x \right)} + 547591590 \sin^{4}{\left(x \right)} - 152108775 \sin^{2}{\left(x \right)} + 35102025\right) \sin{\left(x \right)}}{35102025}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                                                                                                                                                
 |                                                        19             15             7            23            3         27            25            5             21             9              17            
 |    27                    11             13      715*sin  (x)   572*sin  (x)   286*sin (x)   78*sin  (x)   13*sin (x)   sin  (x)   13*sin  (x)   78*sin (x)   286*sin  (x)   715*sin (x)   1287*sin  (x)         
 | cos  (x) dx = C - 117*sin  (x) + 132*sin  (x) - ------------ - ------------ - ----------- - ----------- - ---------- - -------- + ----------- + ---------- + ------------ + ----------- + ------------- + sin(x)
 |                                                      19             5              7             23           3           27           25           5             21             9              17              
/                                                                                                                                                                                                                  
cos27(x)dx=Csin27(x)27+13sin25(x)2578sin23(x)23+286sin21(x)21715sin19(x)19+1287sin17(x)17572sin15(x)5+132sin13(x)117sin11(x)+715sin9(x)9286sin7(x)7+78sin5(x)513sin3(x)3+sin(x)\int \cos^{27}{\left(x \right)}\, dx = C - \frac{\sin^{27}{\left(x \right)}}{27} + \frac{13 \sin^{25}{\left(x \right)}}{25} - \frac{78 \sin^{23}{\left(x \right)}}{23} + \frac{286 \sin^{21}{\left(x \right)}}{21} - \frac{715 \sin^{19}{\left(x \right)}}{19} + \frac{1287 \sin^{17}{\left(x \right)}}{17} - \frac{572 \sin^{15}{\left(x \right)}}{5} + 132 \sin^{13}{\left(x \right)} - 117 \sin^{11}{\left(x \right)} + \frac{715 \sin^{9}{\left(x \right)}}{9} - \frac{286 \sin^{7}{\left(x \right)}}{7} + \frac{78 \sin^{5}{\left(x \right)}}{5} - \frac{13 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}
The answer [src]
                                                                17             9             21            5            25         27            3            23             7             15             19                                                                  17             9             21            5            25         27            3            23             7             15             19    
   22308732928                   13             11      1287*sin  (2)   715*sin (2)   286*sin  (2)   78*sin (2)   13*sin  (2)   sin  (2)   13*sin (2)   78*sin  (2)   286*sin (2)   572*sin  (2)   715*sin  (2)  22308732928                   13             11      1287*sin  (2)   715*sin (2)   286*sin  (2)   78*sin (2)   13*sin  (2)   sin  (2)   13*sin (2)   78*sin  (2)   286*sin (2)   572*sin  (2)   715*sin  (2) 
<- ----------- - sin(2) - 132*sin  (2) + 117*sin  (2) - ------------- - ----------- - ------------ - ---------- - ----------- + -------- + ---------- + ----------- + ----------- + ------------ + ------------, ----------- - sin(2) - 132*sin  (2) + 117*sin  (2) - ------------- - ----------- - ------------ - ---------- - ----------- + -------- + ---------- + ----------- + ----------- + ------------ + ------------>
     35102025                                                 17             9             21            5             25          27          3             23            7             5              19         35102025                                                 17             9             21            5             25          27          3             23            7             5              19      
2230873292835102025132sin13(2)715sin9(2)91287sin17(2)1778sin5(2)5286sin21(2)21sin(2)13sin25(2)25+sin27(2)27+78sin23(2)23+13sin3(2)3+715sin19(2)19+286sin7(2)7+572sin15(2)5+117sin11(2),132sin13(2)715sin9(2)91287sin17(2)1778sin5(2)5286sin21(2)21sin(2)13sin25(2)25+sin27(2)27+78sin23(2)23+13sin3(2)3+715sin19(2)19+286sin7(2)7+572sin15(2)5+117sin11(2)+2230873292835102025\left\langle - \frac{22308732928}{35102025} - 132 \sin^{13}{\left(2 \right)} - \frac{715 \sin^{9}{\left(2 \right)}}{9} - \frac{1287 \sin^{17}{\left(2 \right)}}{17} - \frac{78 \sin^{5}{\left(2 \right)}}{5} - \frac{286 \sin^{21}{\left(2 \right)}}{21} - \sin{\left(2 \right)} - \frac{13 \sin^{25}{\left(2 \right)}}{25} + \frac{\sin^{27}{\left(2 \right)}}{27} + \frac{78 \sin^{23}{\left(2 \right)}}{23} + \frac{13 \sin^{3}{\left(2 \right)}}{3} + \frac{715 \sin^{19}{\left(2 \right)}}{19} + \frac{286 \sin^{7}{\left(2 \right)}}{7} + \frac{572 \sin^{15}{\left(2 \right)}}{5} + 117 \sin^{11}{\left(2 \right)}, - 132 \sin^{13}{\left(2 \right)} - \frac{715 \sin^{9}{\left(2 \right)}}{9} - \frac{1287 \sin^{17}{\left(2 \right)}}{17} - \frac{78 \sin^{5}{\left(2 \right)}}{5} - \frac{286 \sin^{21}{\left(2 \right)}}{21} - \sin{\left(2 \right)} - \frac{13 \sin^{25}{\left(2 \right)}}{25} + \frac{\sin^{27}{\left(2 \right)}}{27} + \frac{78 \sin^{23}{\left(2 \right)}}{23} + \frac{13 \sin^{3}{\left(2 \right)}}{3} + \frac{715 \sin^{19}{\left(2 \right)}}{19} + \frac{286 \sin^{7}{\left(2 \right)}}{7} + \frac{572 \sin^{15}{\left(2 \right)}}{5} + 117 \sin^{11}{\left(2 \right)} + \frac{22308732928}{35102025}\right\rangle
=
=
                                                                17             9             21            5            25         27            3            23             7             15             19                                                                  17             9             21            5            25         27            3            23             7             15             19    
   22308732928                   13             11      1287*sin  (2)   715*sin (2)   286*sin  (2)   78*sin (2)   13*sin  (2)   sin  (2)   13*sin (2)   78*sin  (2)   286*sin (2)   572*sin  (2)   715*sin  (2)  22308732928                   13             11      1287*sin  (2)   715*sin (2)   286*sin  (2)   78*sin (2)   13*sin  (2)   sin  (2)   13*sin (2)   78*sin  (2)   286*sin (2)   572*sin  (2)   715*sin  (2) 
<- ----------- - sin(2) - 132*sin  (2) + 117*sin  (2) - ------------- - ----------- - ------------ - ---------- - ----------- + -------- + ---------- + ----------- + ----------- + ------------ + ------------, ----------- - sin(2) - 132*sin  (2) + 117*sin  (2) - ------------- - ----------- - ------------ - ---------- - ----------- + -------- + ---------- + ----------- + ----------- + ------------ + ------------>
     35102025                                                 17             9             21            5             25          27          3             23            7             5              19         35102025                                                 17             9             21            5             25          27          3             23            7             5              19      
2230873292835102025132sin13(2)715sin9(2)91287sin17(2)1778sin5(2)5286sin21(2)21sin(2)13sin25(2)25+sin27(2)27+78sin23(2)23+13sin3(2)3+715sin19(2)19+286sin7(2)7+572sin15(2)5+117sin11(2),132sin13(2)715sin9(2)91287sin17(2)1778sin5(2)5286sin21(2)21sin(2)13sin25(2)25+sin27(2)27+78sin23(2)23+13sin3(2)3+715sin19(2)19+286sin7(2)7+572sin15(2)5+117sin11(2)+2230873292835102025\left\langle - \frac{22308732928}{35102025} - 132 \sin^{13}{\left(2 \right)} - \frac{715 \sin^{9}{\left(2 \right)}}{9} - \frac{1287 \sin^{17}{\left(2 \right)}}{17} - \frac{78 \sin^{5}{\left(2 \right)}}{5} - \frac{286 \sin^{21}{\left(2 \right)}}{21} - \sin{\left(2 \right)} - \frac{13 \sin^{25}{\left(2 \right)}}{25} + \frac{\sin^{27}{\left(2 \right)}}{27} + \frac{78 \sin^{23}{\left(2 \right)}}{23} + \frac{13 \sin^{3}{\left(2 \right)}}{3} + \frac{715 \sin^{19}{\left(2 \right)}}{19} + \frac{286 \sin^{7}{\left(2 \right)}}{7} + \frac{572 \sin^{15}{\left(2 \right)}}{5} + 117 \sin^{11}{\left(2 \right)}, - 132 \sin^{13}{\left(2 \right)} - \frac{715 \sin^{9}{\left(2 \right)}}{9} - \frac{1287 \sin^{17}{\left(2 \right)}}{17} - \frac{78 \sin^{5}{\left(2 \right)}}{5} - \frac{286 \sin^{21}{\left(2 \right)}}{21} - \sin{\left(2 \right)} - \frac{13 \sin^{25}{\left(2 \right)}}{25} + \frac{\sin^{27}{\left(2 \right)}}{27} + \frac{78 \sin^{23}{\left(2 \right)}}{23} + \frac{13 \sin^{3}{\left(2 \right)}}{3} + \frac{715 \sin^{19}{\left(2 \right)}}{19} + \frac{286 \sin^{7}{\left(2 \right)}}{7} + \frac{572 \sin^{15}{\left(2 \right)}}{5} + 117 \sin^{11}{\left(2 \right)} + \frac{22308732928}{35102025}\right\rangle
AccumBounds(-22308732928/35102025 - sin(2) - 132*sin(2)^13 + 117*sin(2)^11 - 1287*sin(2)^17/17 - 715*sin(2)^9/9 - 286*sin(2)^21/21 - 78*sin(2)^5/5 - 13*sin(2)^25/25 + sin(2)^27/27 + 13*sin(2)^3/3 + 78*sin(2)^23/23 + 286*sin(2)^7/7 + 572*sin(2)^15/5 + 715*sin(2)^19/19, 22308732928/35102025 - sin(2) - 132*sin(2)^13 + 117*sin(2)^11 - 1287*sin(2)^17/17 - 715*sin(2)^9/9 - 286*sin(2)^21/21 - 78*sin(2)^5/5 - 13*sin(2)^25/25 + sin(2)^27/27 + 13*sin(2)^3/3 + 78*sin(2)^23/23 + 286*sin(2)^7/7 + 572*sin(2)^15/5 + 715*sin(2)^19/19)

    Use the examples entering the upper and lower limits of integration.