Integral of cos^27x dx
The solution
Detail solution
-
Rewrite the integrand:
cos27(x)=(1−sin2(x))13cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(1−sin2(x))13cos(x)=−sin26(x)cos(x)+13sin24(x)cos(x)−78sin22(x)cos(x)+286sin20(x)cos(x)−715sin18(x)cos(x)+1287sin16(x)cos(x)−1716sin14(x)cos(x)+1716sin12(x)cos(x)−1287sin10(x)cos(x)+715sin8(x)cos(x)−286sin6(x)cos(x)+78sin4(x)cos(x)−13sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin26(x)cos(x))dx=−∫sin26(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u26du
-
The integral of un is n+1un+1 when n=−1:
∫u26du=27u27
Now substitute u back in:
27sin27(x)
So, the result is: −27sin27(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫13sin24(x)cos(x)dx=13∫sin24(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u24du
-
The integral of un is n+1un+1 when n=−1:
∫u24du=25u25
Now substitute u back in:
25sin25(x)
So, the result is: 2513sin25(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−78sin22(x)cos(x))dx=−78∫sin22(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u22du
-
The integral of un is n+1un+1 when n=−1:
∫u22du=23u23
Now substitute u back in:
23sin23(x)
So, the result is: −2378sin23(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫286sin20(x)cos(x)dx=286∫sin20(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u20du
-
The integral of un is n+1un+1 when n=−1:
∫u20du=21u21
Now substitute u back in:
21sin21(x)
So, the result is: 21286sin21(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−715sin18(x)cos(x))dx=−715∫sin18(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u18du
-
The integral of un is n+1un+1 when n=−1:
∫u18du=19u19
Now substitute u back in:
19sin19(x)
So, the result is: −19715sin19(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫1287sin16(x)cos(x)dx=1287∫sin16(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
Now substitute u back in:
17sin17(x)
So, the result is: 171287sin17(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1716sin14(x)cos(x))dx=−1716∫sin14(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
Now substitute u back in:
15sin15(x)
So, the result is: −5572sin15(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫1716sin12(x)cos(x)dx=1716∫sin12(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
Now substitute u back in:
13sin13(x)
So, the result is: 132sin13(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1287sin10(x)cos(x))dx=−1287∫sin10(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
Now substitute u back in:
11sin11(x)
So, the result is: −117sin11(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫715sin8(x)cos(x)dx=715∫sin8(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
Now substitute u back in:
9sin9(x)
So, the result is: 9715sin9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−286sin6(x)cos(x))dx=−286∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −7286sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫78sin4(x)cos(x)dx=78∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 578sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−13sin2(x)cos(x))dx=−13∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −313sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −27sin27(x)+2513sin25(x)−2378sin23(x)+21286sin21(x)−19715sin19(x)+171287sin17(x)−5572sin15(x)+132sin13(x)−117sin11(x)+9715sin9(x)−7286sin7(x)+578sin5(x)−313sin3(x)+sin(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))13cos(x)=−sin26(x)cos(x)+13sin24(x)cos(x)−78sin22(x)cos(x)+286sin20(x)cos(x)−715sin18(x)cos(x)+1287sin16(x)cos(x)−1716sin14(x)cos(x)+1716sin12(x)cos(x)−1287sin10(x)cos(x)+715sin8(x)cos(x)−286sin6(x)cos(x)+78sin4(x)cos(x)−13sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin26(x)cos(x))dx=−∫sin26(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u26du
-
The integral of un is n+1un+1 when n=−1:
∫u26du=27u27
Now substitute u back in:
27sin27(x)
So, the result is: −27sin27(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫13sin24(x)cos(x)dx=13∫sin24(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u24du
-
The integral of un is n+1un+1 when n=−1:
∫u24du=25u25
Now substitute u back in:
25sin25(x)
So, the result is: 2513sin25(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−78sin22(x)cos(x))dx=−78∫sin22(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u22du
-
The integral of un is n+1un+1 when n=−1:
∫u22du=23u23
Now substitute u back in:
23sin23(x)
So, the result is: −2378sin23(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫286sin20(x)cos(x)dx=286∫sin20(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u20du
-
The integral of un is n+1un+1 when n=−1:
∫u20du=21u21
Now substitute u back in:
21sin21(x)
So, the result is: 21286sin21(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−715sin18(x)cos(x))dx=−715∫sin18(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u18du
-
The integral of un is n+1un+1 when n=−1:
∫u18du=19u19
Now substitute u back in:
19sin19(x)
So, the result is: −19715sin19(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫1287sin16(x)cos(x)dx=1287∫sin16(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
Now substitute u back in:
17sin17(x)
So, the result is: 171287sin17(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1716sin14(x)cos(x))dx=−1716∫sin14(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
Now substitute u back in:
15sin15(x)
So, the result is: −5572sin15(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫1716sin12(x)cos(x)dx=1716∫sin12(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
Now substitute u back in:
13sin13(x)
So, the result is: 132sin13(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1287sin10(x)cos(x))dx=−1287∫sin10(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
Now substitute u back in:
11sin11(x)
So, the result is: −117sin11(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫715sin8(x)cos(x)dx=715∫sin8(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
Now substitute u back in:
9sin9(x)
So, the result is: 9715sin9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−286sin6(x)cos(x))dx=−286∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −7286sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫78sin4(x)cos(x)dx=78∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 578sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−13sin2(x)cos(x))dx=−13∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −313sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −27sin27(x)+2513sin25(x)−2378sin23(x)+21286sin21(x)−19715sin19(x)+171287sin17(x)−5572sin15(x)+132sin13(x)−117sin11(x)+9715sin9(x)−7286sin7(x)+578sin5(x)−313sin3(x)+sin(x)
-
Now simplify:
35102025(−1300075sin26(x)+18253053sin24(x)−119041650sin22(x)+478056150sin20(x)−1320944625sin18(x)+2657429775sin16(x)−4015671660sin14(x)+4633467300sin12(x)−4106936925sin10(x)+2788660875sin8(x)−1434168450sin6(x)+547591590sin4(x)−152108775sin2(x)+35102025)sin(x)
-
Add the constant of integration:
35102025(−1300075sin26(x)+18253053sin24(x)−119041650sin22(x)+478056150sin20(x)−1320944625sin18(x)+2657429775sin16(x)−4015671660sin14(x)+4633467300sin12(x)−4106936925sin10(x)+2788660875sin8(x)−1434168450sin6(x)+547591590sin4(x)−152108775sin2(x)+35102025)sin(x)+constant
The answer is:
35102025(−1300075sin26(x)+18253053sin24(x)−119041650sin22(x)+478056150sin20(x)−1320944625sin18(x)+2657429775sin16(x)−4015671660sin14(x)+4633467300sin12(x)−4106936925sin10(x)+2788660875sin8(x)−1434168450sin6(x)+547591590sin4(x)−152108775sin2(x)+35102025)sin(x)+constant
The answer (Indefinite)
[src]
/
| 19 15 7 23 3 27 25 5 21 9 17
| 27 11 13 715*sin (x) 572*sin (x) 286*sin (x) 78*sin (x) 13*sin (x) sin (x) 13*sin (x) 78*sin (x) 286*sin (x) 715*sin (x) 1287*sin (x)
| cos (x) dx = C - 117*sin (x) + 132*sin (x) - ------------ - ------------ - ----------- - ----------- - ---------- - -------- + ----------- + ---------- + ------------ + ----------- + ------------- + sin(x)
| 19 5 7 23 3 27 25 5 21 9 17
/
∫cos27(x)dx=C−27sin27(x)+2513sin25(x)−2378sin23(x)+21286sin21(x)−19715sin19(x)+171287sin17(x)−5572sin15(x)+132sin13(x)−117sin11(x)+9715sin9(x)−7286sin7(x)+578sin5(x)−313sin3(x)+sin(x)
17 9 21 5 25 27 3 23 7 15 19 17 9 21 5 25 27 3 23 7 15 19
22308732928 13 11 1287*sin (2) 715*sin (2) 286*sin (2) 78*sin (2) 13*sin (2) sin (2) 13*sin (2) 78*sin (2) 286*sin (2) 572*sin (2) 715*sin (2) 22308732928 13 11 1287*sin (2) 715*sin (2) 286*sin (2) 78*sin (2) 13*sin (2) sin (2) 13*sin (2) 78*sin (2) 286*sin (2) 572*sin (2) 715*sin (2)
<- ----------- - sin(2) - 132*sin (2) + 117*sin (2) - ------------- - ----------- - ------------ - ---------- - ----------- + -------- + ---------- + ----------- + ----------- + ------------ + ------------, ----------- - sin(2) - 132*sin (2) + 117*sin (2) - ------------- - ----------- - ------------ - ---------- - ----------- + -------- + ---------- + ----------- + ----------- + ------------ + ------------>
35102025 17 9 21 5 25 27 3 23 7 5 19 35102025 17 9 21 5 25 27 3 23 7 5 19
⟨−3510202522308732928−132sin13(2)−9715sin9(2)−171287sin17(2)−578sin5(2)−21286sin21(2)−sin(2)−2513sin25(2)+27sin27(2)+2378sin23(2)+313sin3(2)+19715sin19(2)+7286sin7(2)+5572sin15(2)+117sin11(2),−132sin13(2)−9715sin9(2)−171287sin17(2)−578sin5(2)−21286sin21(2)−sin(2)−2513sin25(2)+27sin27(2)+2378sin23(2)+313sin3(2)+19715sin19(2)+7286sin7(2)+5572sin15(2)+117sin11(2)+3510202522308732928⟩
=
17 9 21 5 25 27 3 23 7 15 19 17 9 21 5 25 27 3 23 7 15 19
22308732928 13 11 1287*sin (2) 715*sin (2) 286*sin (2) 78*sin (2) 13*sin (2) sin (2) 13*sin (2) 78*sin (2) 286*sin (2) 572*sin (2) 715*sin (2) 22308732928 13 11 1287*sin (2) 715*sin (2) 286*sin (2) 78*sin (2) 13*sin (2) sin (2) 13*sin (2) 78*sin (2) 286*sin (2) 572*sin (2) 715*sin (2)
<- ----------- - sin(2) - 132*sin (2) + 117*sin (2) - ------------- - ----------- - ------------ - ---------- - ----------- + -------- + ---------- + ----------- + ----------- + ------------ + ------------, ----------- - sin(2) - 132*sin (2) + 117*sin (2) - ------------- - ----------- - ------------ - ---------- - ----------- + -------- + ---------- + ----------- + ----------- + ------------ + ------------>
35102025 17 9 21 5 25 27 3 23 7 5 19 35102025 17 9 21 5 25 27 3 23 7 5 19
⟨−3510202522308732928−132sin13(2)−9715sin9(2)−171287sin17(2)−578sin5(2)−21286sin21(2)−sin(2)−2513sin25(2)+27sin27(2)+2378sin23(2)+313sin3(2)+19715sin19(2)+7286sin7(2)+5572sin15(2)+117sin11(2),−132sin13(2)−9715sin9(2)−171287sin17(2)−578sin5(2)−21286sin21(2)−sin(2)−2513sin25(2)+27sin27(2)+2378sin23(2)+313sin3(2)+19715sin19(2)+7286sin7(2)+5572sin15(2)+117sin11(2)+3510202522308732928⟩
AccumBounds(-22308732928/35102025 - sin(2) - 132*sin(2)^13 + 117*sin(2)^11 - 1287*sin(2)^17/17 - 715*sin(2)^9/9 - 286*sin(2)^21/21 - 78*sin(2)^5/5 - 13*sin(2)^25/25 + sin(2)^27/27 + 13*sin(2)^3/3 + 78*sin(2)^23/23 + 286*sin(2)^7/7 + 572*sin(2)^15/5 + 715*sin(2)^19/19, 22308732928/35102025 - sin(2) - 132*sin(2)^13 + 117*sin(2)^11 - 1287*sin(2)^17/17 - 715*sin(2)^9/9 - 286*sin(2)^21/21 - 78*sin(2)^5/5 - 13*sin(2)^25/25 + sin(2)^27/27 + 13*sin(2)^3/3 + 78*sin(2)^23/23 + 286*sin(2)^7/7 + 572*sin(2)^15/5 + 715*sin(2)^19/19)
Use the examples entering the upper and lower limits of integration.