Mister Exam

Other calculators

Integral of cos(pi/(6*x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |     / pi\   
 |  cos|---| dx
 |     \6*x/   
 |             
/              
1              
$$\int\limits_{1}^{\infty} \cos{\left(\frac{\pi}{6 x} \right)}\, dx$$
Integral(cos(pi/((6*x))), (x, 1, oo))
The answer (Indefinite) [src]
  /                                    / pi\
 |                                pi*Si|---|
 |    / pi\               / pi\        \6*x/
 | cos|---| dx = C + x*cos|---| + ----------
 |    \6*x/               \6*x/       6     
 |                                          
/                                           
$$\int \cos{\left(\frac{\pi}{6 x} \right)}\, dx = C + x \cos{\left(\frac{\pi}{6 x} \right)} + \frac{\pi \operatorname{Si}{\left(\frac{\pi}{6 x} \right)}}{6}$$
The graph
The answer [src]
          /pi\
     pi*Si|--|
          \6 /
oo - ---------
         6    
$$- \frac{\pi \operatorname{Si}{\left(\frac{\pi}{6} \right)}}{6} + \infty$$
=
=
          /pi\
     pi*Si|--|
          \6 /
oo - ---------
         6    
$$- \frac{\pi \operatorname{Si}{\left(\frac{\pi}{6} \right)}}{6} + \infty$$
oo - pi*Si(pi/6)/6

    Use the examples entering the upper and lower limits of integration.