Mister Exam

Other calculators

Integral of ((cos*x)*dx)/sqrt((2sin*x)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  p                    
  -                    
  2                    
  /                    
 |                     
 |       cos(x)        
 |  ---------------- dx
 |    ______________   
 |  \/ 2*sin(x) + 1    
 |                     
/                      
0                      
$$\int\limits_{0}^{\frac{p}{2}} \frac{\cos{\left(x \right)}}{\sqrt{2 \sin{\left(x \right)} + 1}}\, dx$$
Integral(cos(x)/sqrt(2*sin(x) + 1), (x, 0, p/2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant is the constant times the variable of integration:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                           
 |      cos(x)                 ______________
 | ---------------- dx = C + \/ 2*sin(x) + 1 
 |   ______________                          
 | \/ 2*sin(x) + 1                           
 |                                           
/                                            
$$\int \frac{\cos{\left(x \right)}}{\sqrt{2 \sin{\left(x \right)} + 1}}\, dx = C + \sqrt{2 \sin{\left(x \right)} + 1}$$
The answer [src]
         ______________
        /          /p\ 
-1 +   /  1 + 2*sin|-| 
     \/            \2/ 
$$\sqrt{2 \sin{\left(\frac{p}{2} \right)} + 1} - 1$$
=
=
         ______________
        /          /p\ 
-1 +   /  1 + 2*sin|-| 
     \/            \2/ 
$$\sqrt{2 \sin{\left(\frac{p}{2} \right)} + 1} - 1$$
-1 + sqrt(1 + 2*sin(p/2))

    Use the examples entering the upper and lower limits of integration.