p - 2 / | | cos(x) | ---------------- dx | ______________ | \/ 2*sin(x) + 1 | / 0
Integral(cos(x)/sqrt(2*sin(x) + 1), (x, 0, p/2))
Let .
Then let and substitute :
The integral of a constant is the constant times the variable of integration:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | cos(x) ______________ | ---------------- dx = C + \/ 2*sin(x) + 1 | ______________ | \/ 2*sin(x) + 1 | /
______________
/ /p\
-1 + / 1 + 2*sin|-|
\/ \2/
=
______________
/ /p\
-1 + / 1 + 2*sin|-|
\/ \2/
-1 + sqrt(1 + 2*sin(p/2))
Use the examples entering the upper and lower limits of integration.