Mister Exam

Other calculators

Integral of cosdx/(2sinx-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     cos(1)      
 |  ------------ dx
 |  2*sin(x) - 1   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\cos{\left(1 \right)}}{2 \sin{\left(x \right)} - 1}\, dx$$
Integral(cos(1)/(2*sin(x) - 1), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      /    ___    /       ___      /x\\     ___    /       ___      /x\\\       
 |                       |  \/ 3 *log|-2 - \/ 3  + tan|-||   \/ 3 *log|-2 + \/ 3  + tan|-|||       
 |    cos(1)             |           \                \2//            \                \2//|       
 | ------------ dx = C + |- ------------------------------ + ------------------------------|*cos(1)
 | 2*sin(x) - 1          \                3                                3               /       
 |                                                                                                 
/                                                                                                  
$$\int \frac{\cos{\left(1 \right)}}{2 \sin{\left(x \right)} - 1}\, dx = C + \left(- \frac{\sqrt{3} \log{\left(\tan{\left(\frac{x}{2} \right)} - 2 - \sqrt{3} \right)}}{3} + \frac{\sqrt{3} \log{\left(\tan{\left(\frac{x}{2} \right)} - 2 + \sqrt{3} \right)}}{3}\right) \cos{\left(1 \right)}$$
The graph
Numerical answer [src]
4.09526803133794
4.09526803133794

    Use the examples entering the upper and lower limits of integration.