Mister Exam

Other calculators

Integral of cos^3xsin^2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  p                     
  -                     
  2                     
  /                     
 |                      
 |     3       2        
 |  cos (x)*sin (x)*1 dx
 |                      
/                       
0                       
$$\int\limits_{0}^{\frac{p}{2}} \cos^{3}{\left(x \right)} \sin^{2}{\left(x \right)} 1\, dx$$
Integral(cos(x)^3*sin(x)^2*1, (x, 0, p/2))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of is when :

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                               5         3   
 |    3       2               sin (x)   sin (x)
 | cos (x)*sin (x)*1 dx = C - ------- + -------
 |                               5         3   
/                                              
$$-{{3\,\sin ^5x-5\,\sin ^3x}\over{15}}$$
The answer [src]
     5/p\      3/p\
  sin |-|   sin |-|
      \2/       \2/
- ------- + -------
     5         3   
$$- \frac{\sin^{5}{\left(\frac{p}{2} \right)}}{5} + \frac{\sin^{3}{\left(\frac{p}{2} \right)}}{3}$$
=
=
     5/p\      3/p\
  sin |-|   sin |-|
      \2/       \2/
- ------- + -------
     5         3   
$$- \frac{\sin^{5}{\left(\frac{p}{2} \right)}}{5} + \frac{\sin^{3}{\left(\frac{p}{2} \right)}}{3}$$

    Use the examples entering the upper and lower limits of integration.