Integral of (cos^3x/sin^6x) dx
The solution
Detail solution
-
Rewrite the integrand:
sin6(x)cos3(x)=sin6(x)(1−sin2(x))cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u61−u2du
-
Rewrite the integrand:
u61−u2=−u41+u61
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u41)du=−∫u41du
-
The integral of un is n+1un+1 when n=−1:
∫u41du=−3u31
So, the result is: 3u31
-
The integral of un is n+1un+1 when n=−1:
∫u61du=−5u51
The result is: 3u31−5u51
Now substitute u back in:
3sin3(x)1−5sin5(x)1
Method #2
-
Rewrite the integrand:
sin6(x)(1−sin2(x))cos(x)=sin6(x)−sin2(x)cos(x)+cos(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u61−u2du
-
Rewrite the integrand:
u61−u2=−u41+u61
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u41)du=−∫u41du
-
The integral of un is n+1un+1 when n=−1:
∫u41du=−3u31
So, the result is: 3u31
-
The integral of un is n+1un+1 when n=−1:
∫u61du=−5u51
The result is: 3u31−5u51
Now substitute u back in:
3sin3(x)1−5sin5(x)1
Method #3
-
Rewrite the integrand:
sin6(x)(1−sin2(x))cos(x)=−sin4(x)cos(x)+sin6(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin4(x)cos(x))dx=−∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u41du
-
The integral of un is n+1un+1 when n=−1:
∫u41du=−3u31
Now substitute u back in:
−3sin3(x)1
So, the result is: 3sin3(x)1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u61du
-
The integral of un is n+1un+1 when n=−1:
∫u61du=−5u51
Now substitute u back in:
−5sin5(x)1
The result is: 3sin3(x)1−5sin5(x)1
-
Now simplify:
15sin5(x)5sin2(x)−3
-
Add the constant of integration:
15sin5(x)5sin2(x)−3+constant
The answer is:
15sin5(x)5sin2(x)−3+constant
The answer (Indefinite)
[src]
/
|
| 3
| cos (x) 1 1
| ------- dx = C - --------- + ---------
| 6 5 3
| sin (x) 5*sin (x) 3*sin (x)
|
/
∫sin6(x)cos3(x)dx=C+3sin3(x)1−5sin5(x)1
The graph
Use the examples entering the upper and lower limits of integration.