Mister Exam

Other calculators

Integral of cos6x-sin3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |  (cos(6*x) - sin(3*x)) dx
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \left(- \sin{\left(3 x \right)} + \cos{\left(6 x \right)}\right)\, dx$$
Integral(cos(6*x) - sin(3*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                cos(3*x)   sin(6*x)
 | (cos(6*x) - sin(3*x)) dx = C + -------- + --------
 |                                   3          6    
/                                                    
$$\int \left(- \sin{\left(3 x \right)} + \cos{\left(6 x \right)}\right)\, dx = C + \frac{\sin{\left(6 x \right)}}{6} + \frac{\cos{\left(3 x \right)}}{3}$$
The graph
The answer [src]
  1   cos(3)   sin(6)
- - + ------ + ------
  3     3        6   
$$- \frac{1}{3} + \frac{\cos{\left(3 \right)}}{3} + \frac{\sin{\left(6 \right)}}{6}$$
=
=
  1   cos(3)   sin(6)
- - + ------ + ------
  3     3        6   
$$- \frac{1}{3} + \frac{\cos{\left(3 \right)}}{3} + \frac{\sin{\left(6 \right)}}{6}$$
-1/3 + cos(3)/3 + sin(6)/6
Numerical answer [src]
-0.709900081899969
-0.709900081899969

    Use the examples entering the upper and lower limits of integration.