Mister Exam

Other calculators


cos(5x)sin(4x)

Integral of cos(5x)sin(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
 --                     
 2                      
  /                     
 |                      
 |  cos(5*x)*sin(4*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{\frac{\pi}{2}} \sin{\left(4 x \right)} \cos{\left(5 x \right)}\, dx$$
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of is when :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            The result is:

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          The result is:

        Method #3

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          The result is:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of is when :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          The result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of is when :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          The result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            9            3   
 |                                  5            7      128*cos (x)   20*cos (x)
 | cos(5*x)*sin(4*x) dx = C - 24*cos (x) + 32*cos (x) - ----------- + ----------
 |                                                           9            3     
/                                                                               
$$\int \sin{\left(4 x \right)} \cos{\left(5 x \right)}\, dx = - \frac{128 \cos^{9}{\left(x \right)}}{9} + 32 \cos^{7}{\left(x \right)} - 24 \cos^{5}{\left(x \right)} + \frac{20 \cos^{3}{\left(x \right)}}{3} + C$$
The graph
The answer [src]
-4/9
$$- \frac{4}{9}$$
=
=
-4/9
$$- \frac{4}{9}$$
Numerical answer [src]
-0.444444444444444
-0.444444444444444
The graph
Integral of cos(5x)sin(4x) dx

    Use the examples entering the upper and lower limits of integration.