1 / | | / 1 \ | |cos(5*x) + --| dx | | 2| | \ x / | / 0
Integral(cos(5*x) + 1/(x^2), (x, 0, 1))
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)
The result is:
Add the constant of integration:
The answer is:
/ | | / 1 \ | |cos(5*x) + --| dx = nan | | 2| | \ x / | /
Use the examples entering the upper and lower limits of integration.