Mister Exam

Other calculators

Integral of cos4x/(sqrtsin4x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |      cos(4*x)       
 |  ---------------- dx
 |    __________       
 |  \/ sin(4*x)  + 1   
 |                     
/                      
0                      
01cos(4x)sin(4x)+1dx\int\limits_{0}^{1} \frac{\cos{\left(4 x \right)}}{\sqrt{\sin{\left(4 x \right)}} + 1}\, dx
Integral(cos(4*x)/(sqrt(sin(4*x)) + 1), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute dudu:

      cos(u)4sin(u)+4du\int \frac{\cos{\left(u \right)}}{4 \sqrt{\sin{\left(u \right)}} + 4}\, du

      1. Let u=sin(u)u = \sqrt{\sin{\left(u \right)}}.

        Then let du=cos(u)du2sin(u)du = \frac{\cos{\left(u \right)} du}{2 \sqrt{\sin{\left(u \right)}}} and substitute dudu:

        u2u+2du\int \frac{u}{2 u + 2}\, du

        1. Rewrite the integrand:

          u2u+2=1212(u+1)\frac{u}{2 u + 2} = \frac{1}{2} - \frac{1}{2 \left(u + 1\right)}

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (12(u+1))du=1u+1du2\int \left(- \frac{1}{2 \left(u + 1\right)}\right)\, du = - \frac{\int \frac{1}{u + 1}\, du}{2}

            1. Let u=u+1u = u + 1.

              Then let du=dudu = du and substitute dudu:

              1udu\int \frac{1}{u}\, du

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              Now substitute uu back in:

              log(u+1)\log{\left(u + 1 \right)}

            So, the result is: log(u+1)2- \frac{\log{\left(u + 1 \right)}}{2}

          The result is: u2log(u+1)2\frac{u}{2} - \frac{\log{\left(u + 1 \right)}}{2}

        Now substitute uu back in:

        log(sin(u)+1)2+sin(u)2- \frac{\log{\left(\sqrt{\sin{\left(u \right)}} + 1 \right)}}{2} + \frac{\sqrt{\sin{\left(u \right)}}}{2}

      Now substitute uu back in:

      log(sin(4x)+1)2+sin(4x)2- \frac{\log{\left(\sqrt{\sin{\left(4 x \right)}} + 1 \right)}}{2} + \frac{\sqrt{\sin{\left(4 x \right)}}}{2}

    Method #2

    1. Let u=sin(4x)u = \sqrt{\sin{\left(4 x \right)}}.

      Then let du=2cos(4x)dxsin(4x)du = \frac{2 \cos{\left(4 x \right)} dx}{\sqrt{\sin{\left(4 x \right)}}} and substitute dudu:

      u2u+2du\int \frac{u}{2 u + 2}\, du

      1. Rewrite the integrand:

        u2u+2=1212(u+1)\frac{u}{2 u + 2} = \frac{1}{2} - \frac{1}{2 \left(u + 1\right)}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (12(u+1))du=1u+1du2\int \left(- \frac{1}{2 \left(u + 1\right)}\right)\, du = - \frac{\int \frac{1}{u + 1}\, du}{2}

          1. Let u=u+1u = u + 1.

            Then let du=dudu = du and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(u+1)\log{\left(u + 1 \right)}

          So, the result is: log(u+1)2- \frac{\log{\left(u + 1 \right)}}{2}

        The result is: u2log(u+1)2\frac{u}{2} - \frac{\log{\left(u + 1 \right)}}{2}

      Now substitute uu back in:

      log(sin(4x)+1)2+sin(4x)2- \frac{\log{\left(\sqrt{\sin{\left(4 x \right)}} + 1 \right)}}{2} + \frac{\sqrt{\sin{\left(4 x \right)}}}{2}

  2. Add the constant of integration:

    log(sin(4x)+1)2+sin(4x)2+constant- \frac{\log{\left(\sqrt{\sin{\left(4 x \right)}} + 1 \right)}}{2} + \frac{\sqrt{\sin{\left(4 x \right)}}}{2}+ \mathrm{constant}


The answer is:

log(sin(4x)+1)2+sin(4x)2+constant- \frac{\log{\left(\sqrt{\sin{\left(4 x \right)}} + 1 \right)}}{2} + \frac{\sqrt{\sin{\left(4 x \right)}}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                              
 |                             __________      /      __________\
 |     cos(4*x)              \/ sin(4*x)    log\1 + \/ sin(4*x) /
 | ---------------- dx = C + ------------ - ---------------------
 |   __________                   2                   2          
 | \/ sin(4*x)  + 1                                              
 |                                                               
/                                                                
cos(4x)sin(4x)+1dx=Clog(sin(4x)+1)2+sin(4x)2\int \frac{\cos{\left(4 x \right)}}{\sqrt{\sin{\left(4 x \right)}} + 1}\, dx = C - \frac{\log{\left(\sqrt{\sin{\left(4 x \right)}} + 1 \right)}}{2} + \frac{\sqrt{\sin{\left(4 x \right)}}}{2}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.752-2
The answer [src]
  ________      /      ________\
\/ sin(4)    log\1 + \/ sin(4) /
---------- - -------------------
    2                 2         
log(1+sin(4))2+sin(4)2- \frac{\log{\left(1 + \sqrt{\sin{\left(4 \right)}} \right)}}{2} + \frac{\sqrt{\sin{\left(4 \right)}}}{2}
=
=
  ________      /      ________\
\/ sin(4)    log\1 + \/ sin(4) /
---------- - -------------------
    2                 2         
log(1+sin(4))2+sin(4)2- \frac{\log{\left(1 + \sqrt{\sin{\left(4 \right)}} \right)}}{2} + \frac{\sqrt{\sin{\left(4 \right)}}}{2}
sqrt(sin(4))/2 - log(1 + sqrt(sin(4)))/2
Numerical answer [src]
(-0.140934640209814 + 0.0771497634534624j)
(-0.140934640209814 + 0.0771497634534624j)

    Use the examples entering the upper and lower limits of integration.