1 / | | cos(4*x) | ---------------- dx | __________ | \/ sin(4*x) + 1 | / 0
Integral(cos(4*x)/(sqrt(sin(4*x)) + 1), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Let .
Then let and substitute :
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
Now substitute back in:
Now substitute back in:
Let .
Then let and substitute :
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | __________ / __________\ | cos(4*x) \/ sin(4*x) log\1 + \/ sin(4*x) / | ---------------- dx = C + ------------ - --------------------- | __________ 2 2 | \/ sin(4*x) + 1 | /
________ / ________\ \/ sin(4) log\1 + \/ sin(4) / ---------- - ------------------- 2 2
=
________ / ________\ \/ sin(4) log\1 + \/ sin(4) / ---------- - ------------------- 2 2
sqrt(sin(4))/2 - log(1 + sqrt(sin(4)))/2
(-0.140934640209814 + 0.0771497634534624j)
(-0.140934640209814 + 0.0771497634534624j)
Use the examples entering the upper and lower limits of integration.