Mister Exam

Other calculators

Integral of cos4x/(sqrtsin4x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |      cos(4*x)       
 |  ---------------- dx
 |    __________       
 |  \/ sin(4*x)  + 1   
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\cos{\left(4 x \right)}}{\sqrt{\sin{\left(4 x \right)}} + 1}\, dx$$
Integral(cos(4*x)/(sqrt(sin(4*x)) + 1), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of is .

              Now substitute back in:

            So, the result is:

          The result is:

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        The result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                             __________      /      __________\
 |     cos(4*x)              \/ sin(4*x)    log\1 + \/ sin(4*x) /
 | ---------------- dx = C + ------------ - ---------------------
 |   __________                   2                   2          
 | \/ sin(4*x)  + 1                                              
 |                                                               
/                                                                
$$\int \frac{\cos{\left(4 x \right)}}{\sqrt{\sin{\left(4 x \right)}} + 1}\, dx = C - \frac{\log{\left(\sqrt{\sin{\left(4 x \right)}} + 1 \right)}}{2} + \frac{\sqrt{\sin{\left(4 x \right)}}}{2}$$
The graph
The answer [src]
  ________      /      ________\
\/ sin(4)    log\1 + \/ sin(4) /
---------- - -------------------
    2                 2         
$$- \frac{\log{\left(1 + \sqrt{\sin{\left(4 \right)}} \right)}}{2} + \frac{\sqrt{\sin{\left(4 \right)}}}{2}$$
=
=
  ________      /      ________\
\/ sin(4)    log\1 + \/ sin(4) /
---------- - -------------------
    2                 2         
$$- \frac{\log{\left(1 + \sqrt{\sin{\left(4 \right)}} \right)}}{2} + \frac{\sqrt{\sin{\left(4 \right)}}}{2}$$
sqrt(sin(4))/2 - log(1 + sqrt(sin(4)))/2
Numerical answer [src]
(-0.140934640209814 + 0.0771497634534624j)
(-0.140934640209814 + 0.0771497634534624j)

    Use the examples entering the upper and lower limits of integration.