Mister Exam

Other calculators

Integral of cos(3x-2)-9sin(2-3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                   
  /                                   
 |                                    
 |  (cos(3*x - 2) - 9*sin(2 - 3*x)) dx
 |                                    
/                                     
0                                     
$$\int\limits_{0}^{1} \left(- 9 \sin{\left(2 - 3 x \right)} + \cos{\left(3 x - 2 \right)}\right)\, dx$$
Integral(cos(3*x - 2) - 9*sin(2 - 3*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                       
 |                                                            sin(3*x - 2)
 | (cos(3*x - 2) - 9*sin(2 - 3*x)) dx = C - 3*cos(-2 + 3*x) + ------------
 |                                                                 3      
/                                                                         
$$\int \left(- 9 \sin{\left(2 - 3 x \right)} + \cos{\left(3 x - 2 \right)}\right)\, dx = C + \frac{\sin{\left(3 x - 2 \right)}}{3} - 3 \cos{\left(3 x - 2 \right)}$$
The graph
The answer [src]
                       sin(1)   sin(2)
-3*cos(1) + 3*cos(2) + ------ + ------
                         3        3   
$$- 3 \cos{\left(1 \right)} + 3 \cos{\left(2 \right)} + \frac{\sin{\left(1 \right)}}{3} + \frac{\sin{\left(2 \right)}}{3}$$
=
=
                       sin(1)   sin(2)
-3*cos(1) + 3*cos(2) + ------ + ------
                         3        3   
$$- 3 \cos{\left(1 \right)} + 3 \cos{\left(2 \right)} + \frac{\sin{\left(1 \right)}}{3} + \frac{\sin{\left(2 \right)}}{3}$$
-3*cos(1) + 3*cos(2) + sin(1)/3 + sin(2)/3
Numerical answer [src]
-2.28575795670132
-2.28575795670132

    Use the examples entering the upper and lower limits of integration.