1 / | | (cos(3*x - 2) - 9*sin(2 - 3*x)) dx | / 0
Integral(cos(3*x - 2) - 9*sin(2 - 3*x), (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | sin(3*x - 2) | (cos(3*x - 2) - 9*sin(2 - 3*x)) dx = C - 3*cos(-2 + 3*x) + ------------ | 3 /
sin(1) sin(2) -3*cos(1) + 3*cos(2) + ------ + ------ 3 3
=
sin(1) sin(2) -3*cos(1) + 3*cos(2) + ------ + ------ 3 3
-3*cos(1) + 3*cos(2) + sin(1)/3 + sin(2)/3
Use the examples entering the upper and lower limits of integration.