Mister Exam

Other calculators


(cos2x+sin3x)cosx

Integral of (cos2x+sin3x)cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                
  /                                
 |                                 
 |  (cos(2*x) + sin(3*x))*cos(x) dx
 |                                 
/                                  
0                                  
$$\int\limits_{0}^{1} \left(\sin{\left(3 x \right)} + \cos{\left(2 x \right)}\right) \cos{\left(x \right)}\, dx$$
Integral((cos(2*x) + sin(3*x))*cos(x), (x, 0, 1))
The graph
The answer [src]
3   3*cos(1)*cos(3)   cos(2)*sin(1)   sin(1)*sin(3)   2*cos(1)*sin(2)
- - --------------- - ------------- - ------------- + ---------------
8          8                3               8                3       
$$- \frac{\sin{\left(1 \right)} \sin{\left(3 \right)}}{8} - \frac{\sin{\left(1 \right)} \cos{\left(2 \right)}}{3} - \frac{3 \cos{\left(1 \right)} \cos{\left(3 \right)}}{8} + \frac{2 \sin{\left(2 \right)} \cos{\left(1 \right)}}{3} + \frac{3}{8}$$
=
=
3   3*cos(1)*cos(3)   cos(2)*sin(1)   sin(1)*sin(3)   2*cos(1)*sin(2)
- - --------------- - ------------- - ------------- + ---------------
8          8                3               8                3       
$$- \frac{\sin{\left(1 \right)} \sin{\left(3 \right)}}{8} - \frac{\sin{\left(1 \right)} \cos{\left(2 \right)}}{3} - \frac{3 \cos{\left(1 \right)} \cos{\left(3 \right)}}{8} + \frac{2 \sin{\left(2 \right)} \cos{\left(1 \right)}}{3} + \frac{3}{8}$$
3/8 - 3*cos(1)*cos(3)/8 - cos(2)*sin(1)/3 - sin(1)*sin(3)/8 + 2*cos(1)*sin(2)/3
Numerical answer [src]
1.004997655492
1.004997655492
The graph
Integral of (cos2x+sin3x)cosx dx

    Use the examples entering the upper and lower limits of integration.