Mister Exam

Other calculators

Integral of cos2x/sqrt(3+4sin2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |       cos(2*x)        
 |  ------------------ dx
 |    ________________   
 |  \/ 3 + 4*sin(2*x)    
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{\cos{\left(2 x \right)}}{\sqrt{4 \sin{\left(2 x \right)} + 3}}\, dx$$
Integral(cos(2*x)/sqrt(3 + 4*sin(2*x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of a constant is the constant times the variable of integration:

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                               ________________
 |      cos(2*x)               \/ 3 + 4*sin(2*x) 
 | ------------------ dx = C + ------------------
 |   ________________                  4         
 | \/ 3 + 4*sin(2*x)                             
 |                                               
/                                                
$$\int \frac{\cos{\left(2 x \right)}}{\sqrt{4 \sin{\left(2 x \right)} + 3}}\, dx = C + \frac{\sqrt{4 \sin{\left(2 x \right)} + 3}}{4}$$
The graph
The answer [src]
    ___     ______________
  \/ 3    \/ 3 + 4*sin(2) 
- ----- + ----------------
    4            4        
$$- \frac{\sqrt{3}}{4} + \frac{\sqrt{3 + 4 \sin{\left(2 \right)}}}{4}$$
=
=
    ___     ______________
  \/ 3    \/ 3 + 4*sin(2) 
- ----- + ----------------
    4            4        
$$- \frac{\sqrt{3}}{4} + \frac{\sqrt{3 + 4 \sin{\left(2 \right)}}}{4}$$
-sqrt(3)/4 + sqrt(3 + 4*sin(2))/4
Numerical answer [src]
0.211055894381827
0.211055894381827

    Use the examples entering the upper and lower limits of integration.