1 / | | cos(2*x) | ------------------ dx | ________________ | \/ 3 + 4*sin(2*x) | / 0
Integral(cos(2*x)/sqrt(3 + 4*sin(2*x)), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant is the constant times the variable of integration:
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | ________________ | cos(2*x) \/ 3 + 4*sin(2*x) | ------------------ dx = C + ------------------ | ________________ 4 | \/ 3 + 4*sin(2*x) | /
___ ______________ \/ 3 \/ 3 + 4*sin(2) - ----- + ---------------- 4 4
=
___ ______________ \/ 3 \/ 3 + 4*sin(2) - ----- + ---------------- 4 4
-sqrt(3)/4 + sqrt(3 + 4*sin(2))/4
Use the examples entering the upper and lower limits of integration.