Integral of cos²3x dx
The solution
Detail solution
-
Rewrite the integrand:
cos2(3x)=2cos(6x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(6x)dx=2∫cos(6x)dx
-
Let u=6x.
Then let du=6dx and substitute 6du:
∫6cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=6∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 6sin(u)
Now substitute u back in:
6sin(6x)
So, the result is: 12sin(6x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+12sin(6x)
-
Add the constant of integration:
2x+12sin(6x)+constant
The answer is:
2x+12sin(6x)+constant
The answer (Indefinite)
[src]
/
|
| 2 x sin(6*x)
| cos (3*x) dx = C + - + --------
| 2 12
/
∫cos2(3x)dx=C+2x+12sin(6x)
The graph
1 cos(3)*sin(3)
- + -------------
2 6
6sin(3)cos(3)+21
=
1 cos(3)*sin(3)
- + -------------
2 6
6sin(3)cos(3)+21
Use the examples entering the upper and lower limits of integration.