Mister Exam

Integral of cos²3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  cos (3*x) dx
 |              
/               
0               
01cos2(3x)dx\int\limits_{0}^{1} \cos^{2}{\left(3 x \right)}\, dx
Integral(cos(3*x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    cos2(3x)=cos(6x)2+12\cos^{2}{\left(3 x \right)} = \frac{\cos{\left(6 x \right)}}{2} + \frac{1}{2}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      cos(6x)2dx=cos(6x)dx2\int \frac{\cos{\left(6 x \right)}}{2}\, dx = \frac{\int \cos{\left(6 x \right)}\, dx}{2}

      1. Let u=6xu = 6 x.

        Then let du=6dxdu = 6 dx and substitute du6\frac{du}{6}:

        cos(u)6du\int \frac{\cos{\left(u \right)}}{6}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du6\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{6}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)6\frac{\sin{\left(u \right)}}{6}

        Now substitute uu back in:

        sin(6x)6\frac{\sin{\left(6 x \right)}}{6}

      So, the result is: sin(6x)12\frac{\sin{\left(6 x \right)}}{12}

    1. The integral of a constant is the constant times the variable of integration:

      12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

    The result is: x2+sin(6x)12\frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}

  3. Add the constant of integration:

    x2+sin(6x)12+constant\frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}+ \mathrm{constant}


The answer is:

x2+sin(6x)12+constant\frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 |    2               x   sin(6*x)
 | cos (3*x) dx = C + - + --------
 |                    2      12   
/                                 
cos2(3x)dx=C+x2+sin(6x)12\int \cos^{2}{\left(3 x \right)}\, dx = C + \frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
1   cos(3)*sin(3)
- + -------------
2         6      
sin(3)cos(3)6+12\frac{\sin{\left(3 \right)} \cos{\left(3 \right)}}{6} + \frac{1}{2}
=
=
1   cos(3)*sin(3)
- + -------------
2         6      
sin(3)cos(3)6+12\frac{\sin{\left(3 \right)} \cos{\left(3 \right)}}{6} + \frac{1}{2}
1/2 + cos(3)*sin(3)/6
Numerical answer [src]
0.476715375150089
0.476715375150089
The graph
Integral of cos²3x dx

    Use the examples entering the upper and lower limits of integration.