Mister Exam

Other calculators

Integral of cos1/2*xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  cos(1)     
 |  ------*x dx
 |    2        
 |             
/              
0              
$$\int\limits_{0}^{1} x \frac{\cos{\left(1 \right)}}{2}\, dx$$
Integral((cos(1)/2)*x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of is when :

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                           
 |                    2       
 | cos(1)            x *cos(1)
 | ------*x dx = C + ---------
 |   2                   4    
 |                            
/                             
$$\int x \frac{\cos{\left(1 \right)}}{2}\, dx = C + \frac{x^{2} \cos{\left(1 \right)}}{4}$$
The graph
The answer [src]
cos(1)
------
  4   
$$\frac{\cos{\left(1 \right)}}{4}$$
=
=
cos(1)
------
  4   
$$\frac{\cos{\left(1 \right)}}{4}$$
cos(1)/4
Numerical answer [src]
0.135075576467035
0.135075576467035

    Use the examples entering the upper and lower limits of integration.