Mister Exam

Other calculators

Integral of ax^2+bx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  b                
  /                
 |                 
 |  /   2      \   
 |  \a*x  + b*x/ dx
 |                 
/                  
0                  
$$\int\limits_{0}^{b} \left(a x^{2} + b x\right)\, dx$$
Integral(a*x^2 + b*x, (x, 0, b))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                          2      3
 | /   2      \          b*x    a*x 
 | \a*x  + b*x/ dx = C + ---- + ----
 |                        2      3  
/                                   
$$\int \left(a x^{2} + b x\right)\, dx = C + \frac{a x^{3}}{3} + \frac{b x^{2}}{2}$$
The answer [src]
 3      3
b    a*b 
-- + ----
2     3  
$$\frac{a b^{3}}{3} + \frac{b^{3}}{2}$$
=
=
 3      3
b    a*b 
-- + ----
2     3  
$$\frac{a b^{3}}{3} + \frac{b^{3}}{2}$$

    Use the examples entering the upper and lower limits of integration.