1 / | | n | a*x dx | / 0
Integral(a*x^n, (x, 0, 1))
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ // 1 + n \
| ||x |
| n ||------ for n != -1|
| a*x dx = C + a*|<1 + n |
| || |
/ ||log(x) otherwise |
\\ /
/ 1 + n | a a*0 |----- - -------- for And(n > -oo, n < oo, n != -1) <1 + n 1 + n | | oo*sign(a) otherwise \
=
/ 1 + n | a a*0 |----- - -------- for And(n > -oo, n < oo, n != -1) <1 + n 1 + n | | oo*sign(a) otherwise \
Piecewise((a/(1 + n) - a*0^(1 + n)/(1 + n), (n > -oo)∧(n < oo)∧(Ne(n, -1))), (oo*sign(a), True))
Use the examples entering the upper and lower limits of integration.