The answer (Indefinite)
[src]
$${{32\,\left(3\,\int {{{\arctan \left({{1}\over{x}}\right)\,x^2\,
\left(\log \left(x^2+1\right)\right)^2}\over{32\,x^2+32}}}{\;dx}-3\,
\int {{{x\,\left(\log \left(x^2+1\right)\right)^2}\over{32\,x^2+32}}
}{\;dx}+3\,\int {{{\arctan \left({{1}\over{x}}\right)\,\left(\log
\left(x^2+1\right)\right)^2}\over{32\,x^2+32}}}{\;dx}+12\,\int {{{
\arctan \left({{1}\over{x}}\right)\,x^2\,\log \left(x^2+1\right)
}\over{32\,x^2+32}}}{\;dx}+28\,\int {{{\arctan ^3\left({{1}\over{x}}
\right)\,x^2}\over{32\,x^2+32}}}{\;dx}+12\,\int {{{\arctan ^2\left(
{{1}\over{x}}\right)\,x}\over{32\,x^2+32}}}{\;dx}-28\,\left({{3\,
\left(-{{\arctan ^4x}\over{12}}-{{\arctan \left({{1}\over{x}}\right)
\,\arctan ^3x}\over{3}}\right)}\over{32}}-{{3\,\arctan ^2\left({{1
}\over{x}}\right)\,\arctan ^2x}\over{64}}\right)+{{7\,\arctan ^3
\left({{1}\over{x}}\right)\,\arctan x}\over{8}}\right)-3\,
{\rm atan2}\left(1 , x\right)\,x\,\left(\log \left(x^2+1\right)
\right)^2+4\,{\rm atan2}\left(1 , x\right)^3\,x}\over{32}}$$
1
/
|
| 3
| acot (x) dx
|
/
0
$$\int_{0}^{1}{\left({\rm arccot}\; x\right)^3\;dx}$$
=
1
/
|
| 3
| acot (x) dx
|
/
0
$$\int\limits_{0}^{1} \operatorname{acot}^{3}{\left(x \right)}\, dx$$