Mister Exam

Other calculators

Integral of arctgx^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      3      
 |  acot (x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} \operatorname{acot}^{3}{\left(x \right)}\, dx$$
The answer (Indefinite) [src]
$${{32\,\left(3\,\int {{{\arctan \left({{1}\over{x}}\right)\,x^2\, \left(\log \left(x^2+1\right)\right)^2}\over{32\,x^2+32}}}{\;dx}-3\, \int {{{x\,\left(\log \left(x^2+1\right)\right)^2}\over{32\,x^2+32}} }{\;dx}+3\,\int {{{\arctan \left({{1}\over{x}}\right)\,\left(\log \left(x^2+1\right)\right)^2}\over{32\,x^2+32}}}{\;dx}+12\,\int {{{ \arctan \left({{1}\over{x}}\right)\,x^2\,\log \left(x^2+1\right) }\over{32\,x^2+32}}}{\;dx}+28\,\int {{{\arctan ^3\left({{1}\over{x}} \right)\,x^2}\over{32\,x^2+32}}}{\;dx}+12\,\int {{{\arctan ^2\left( {{1}\over{x}}\right)\,x}\over{32\,x^2+32}}}{\;dx}-28\,\left({{3\, \left(-{{\arctan ^4x}\over{12}}-{{\arctan \left({{1}\over{x}}\right) \,\arctan ^3x}\over{3}}\right)}\over{32}}-{{3\,\arctan ^2\left({{1 }\over{x}}\right)\,\arctan ^2x}\over{64}}\right)+{{7\,\arctan ^3 \left({{1}\over{x}}\right)\,\arctan x}\over{8}}\right)-3\, {\rm atan2}\left(1 , x\right)\,x\,\left(\log \left(x^2+1\right) \right)^2+4\,{\rm atan2}\left(1 , x\right)^3\,x}\over{32}}$$
The answer [src]
  1            
  /            
 |             
 |      3      
 |  acot (x) dx
 |             
/              
0              
$$\int_{0}^{1}{\left({\rm arccot}\; x\right)^3\;dx}$$
=
=
  1            
  /            
 |             
 |      3      
 |  acot (x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} \operatorname{acot}^{3}{\left(x \right)}\, dx$$
Numerical answer [src]
1.63246952728207
1.63246952728207

    Use the examples entering the upper and lower limits of integration.