Integral of arctg(4*x)*(x+2) dx
The solution
The answer (Indefinite)
[src]
/ / 2\ 2
| log\1 + 16*x / x atan(4*x) x *atan(4*x)
| atan(4*x)*(x + 2) dx = C - -------------- - - + --------- + ------------ + 2*x*atan(4*x)
| 4 8 32 2
/
$$\int \left(x + 2\right) \operatorname{atan}{\left(4 x \right)}\, dx = C + \frac{x^{2} \operatorname{atan}{\left(4 x \right)}}{2} + 2 x \operatorname{atan}{\left(4 x \right)} - \frac{x}{8} - \frac{\log{\left(16 x^{2} + 1 \right)}}{4} + \frac{\operatorname{atan}{\left(4 x \right)}}{32}$$
1 log(17) 81*atan(4)
- - - ------- + ----------
8 4 32
$$- \frac{\log{\left(17 \right)}}{4} - \frac{1}{8} + \frac{81 \operatorname{atan}{\left(4 \right)}}{32}$$
=
1 log(17) 81*atan(4)
- - - ------- + ----------
8 4 32
$$- \frac{\log{\left(17 \right)}}{4} - \frac{1}{8} + \frac{81 \operatorname{atan}{\left(4 \right)}}{32}$$
-1/8 - log(17)/4 + 81*atan(4)/32
Use the examples entering the upper and lower limits of integration.