Mister Exam

Other calculators

Integral of arctg(4*x)*(x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  atan(4*x)*(x + 2) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(x + 2\right) \operatorname{atan}{\left(4 x \right)}\, dx$$
Integral(atan(4*x)*(x + 2), (x, 0, 1))
The answer (Indefinite) [src]
  /                              /        2\                    2                          
 |                            log\1 + 16*x /   x   atan(4*x)   x *atan(4*x)                
 | atan(4*x)*(x + 2) dx = C - -------------- - - + --------- + ------------ + 2*x*atan(4*x)
 |                                  4          8       32           2                      
/                                                                                          
$$\int \left(x + 2\right) \operatorname{atan}{\left(4 x \right)}\, dx = C + \frac{x^{2} \operatorname{atan}{\left(4 x \right)}}{2} + 2 x \operatorname{atan}{\left(4 x \right)} - \frac{x}{8} - \frac{\log{\left(16 x^{2} + 1 \right)}}{4} + \frac{\operatorname{atan}{\left(4 x \right)}}{32}$$
The graph
The answer [src]
  1   log(17)   81*atan(4)
- - - ------- + ----------
  8      4          32    
$$- \frac{\log{\left(17 \right)}}{4} - \frac{1}{8} + \frac{81 \operatorname{atan}{\left(4 \right)}}{32}$$
=
=
  1   log(17)   81*atan(4)
- - - ------- + ----------
  8      4          32    
$$- \frac{\log{\left(17 \right)}}{4} - \frac{1}{8} + \frac{81 \operatorname{atan}{\left(4 \right)}}{32}$$
-1/8 - log(17)/4 + 81*atan(4)/32
Numerical answer [src]
2.52267262514565
2.52267262514565

    Use the examples entering the upper and lower limits of integration.