Integral of arctg^3x/(1+x^2) dx
The solution
Detail solution
-
Let u=atan(x).
Then let du=x2+1dx and substitute du:
∫u3du
-
The integral of un is n+1un+1 when n=−1:
∫u3du=4u4
Now substitute u back in:
4atan4(x)
-
Add the constant of integration:
4atan4(x)+constant
The answer is:
4atan4(x)+constant
The answer (Indefinite)
[src]
/
|
| 3 4
| atan (x) atan (x)
| -------- dx = C + --------
| 2 4
| 1 + x
|
/
∫x2+1atan3(x)dx=C+4atan4(x)
The graph
64π4
=
64π4
Use the examples entering the upper and lower limits of integration.