Mister Exam

Other calculators

Integral of arctg√(4x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                     
  /                     
 |                      
 |      /  _________\   
 |  atan\\/ 4*x + 1 / dx
 |                      
/                       
0                       
02atan(4x+1)dx\int\limits_{0}^{2} \operatorname{atan}{\left(\sqrt{4 x + 1} \right)}\, dx
Integral(atan(sqrt(4*x + 1)), (x, 0, 2))
The answer (Indefinite) [src]
  /                                                                                        
 |                              _________       /  _________\                 /  _________\
 |     /  _________\          \/ 4*x + 1    atan\\/ 4*x + 1 /   (4*x + 1)*atan\\/ 4*x + 1 /
 | atan\\/ 4*x + 1 / dx = C - ----------- + ----------------- + ---------------------------
 |                                 4                4                        4             
/                                                                                          
atan(4x+1)dx=C4x+14+(4x+1)atan(4x+1)4+atan(4x+1)4\int \operatorname{atan}{\left(\sqrt{4 x + 1} \right)}\, dx = C - \frac{\sqrt{4 x + 1}}{4} + \frac{\left(4 x + 1\right) \operatorname{atan}{\left(\sqrt{4 x + 1} \right)}}{4} + \frac{\operatorname{atan}{\left(\sqrt{4 x + 1} \right)}}{4}
The graph
0.02.00.20.40.60.81.01.21.41.61.80.02.5
The answer [src]
  1   pi   5*atan(3)
- - - -- + ---------
  2   8        2    
12π8+5atan(3)2- \frac{1}{2} - \frac{\pi}{8} + \frac{5 \operatorname{atan}{\left(3 \right)}}{2}
=
=
  1   pi   5*atan(3)
- - - -- + ---------
  2   8        2    
12π8+5atan(3)2- \frac{1}{2} - \frac{\pi}{8} + \frac{5 \operatorname{atan}{\left(3 \right)}}{2}
-1/2 - pi/8 + 5*atan(3)/2
Numerical answer [src]
2.22991534929691
2.22991534929691

    Use the examples entering the upper and lower limits of integration.