The answer (Indefinite)
[src]
$$-{{131072\,\left(9\,\int {{{\arctan \left({{1}\over{x}}\right)\,x^2
\,\left(\log \left(x^2+1\right)\right)^8}\over{131072\,x^2+131072}}
}{\;dx}-9\,\int {{{x\,\left(\log \left(x^2+1\right)\right)^8}\over{
131072\,x^2+131072}}}{\;dx}+9\,\int {{{\arctan \left({{1}\over{x}}
\right)\,\left(\log \left(x^2+1\right)\right)^8}\over{131072\,x^2+
131072}}}{\;dx}+144\,\int {{{\arctan \left({{1}\over{x}}\right)\,x^2
\,\left(\log \left(x^2+1\right)\right)^7}\over{131072\,x^2+131072}}
}{\;dx}-336\,\int {{{\arctan ^3\left({{1}\over{x}}\right)\,x^2\,
\left(\log \left(x^2+1\right)\right)^6}\over{131072\,x^2+131072}}
}{\;dx}+1008\,\int {{{\arctan ^2\left({{1}\over{x}}\right)\,x\,
\left(\log \left(x^2+1\right)\right)^6}\over{131072\,x^2+131072}}
}{\;dx}-336\,\int {{{\arctan ^3\left({{1}\over{x}}\right)\,\left(
\log \left(x^2+1\right)\right)^6}\over{131072\,x^2+131072}}}{\;dx}-
4032\,\int {{{\arctan ^3\left({{1}\over{x}}\right)\,x^2\,\left(\log
\left(x^2+1\right)\right)^5}\over{131072\,x^2+131072}}}{\;dx}+2016\,
\int {{{\arctan ^5\left({{1}\over{x}}\right)\,x^2\,\left(\log \left(
x^2+1\right)\right)^4}\over{131072\,x^2+131072}}}{\;dx}-10080\,
\int {{{\arctan ^4\left({{1}\over{x}}\right)\,x\,\left(\log \left(x^
2+1\right)\right)^4}\over{131072\,x^2+131072}}}{\;dx}+2016\,\int {{{
\arctan ^5\left({{1}\over{x}}\right)\,\left(\log \left(x^2+1\right)
\right)^4}\over{131072\,x^2+131072}}}{\;dx}+16128\,\int {{{\arctan ^
5\left({{1}\over{x}}\right)\,x^2\,\left(\log \left(x^2+1\right)
\right)^3}\over{131072\,x^2+131072}}}{\;dx}-2304\,\int {{{\arctan ^7
\left({{1}\over{x}}\right)\,x^2\,\left(\log \left(x^2+1\right)
\right)^2}\over{131072\,x^2+131072}}}{\;dx}+16128\,\int {{{\arctan ^
6\left({{1}\over{x}}\right)\,x\,\left(\log \left(x^2+1\right)\right)
^2}\over{131072\,x^2+131072}}}{\;dx}-2304\,\int {{{\arctan ^7\left(
{{1}\over{x}}\right)\,\left(\log \left(x^2+1\right)\right)^2}\over{
131072\,x^2+131072}}}{\;dx}-9216\,\int {{{\arctan ^7\left({{1}\over{
x}}\right)\,x^2\,\log \left(x^2+1\right)}\over{131072\,x^2+131072}}
}{\;dx}-130816\,\int {{{\arctan ^9\left({{1}\over{x}}\right)\,x^2
}\over{131072\,x^2+131072}}}{\;dx}-2304\,\int {{{\arctan ^8\left({{1
}\over{x}}\right)\,x}\over{131072\,x^2+131072}}}{\;dx}+130816\,
\left({{9\,\left(4\,\left({{7\,\left({{3\,\left({{2\,\left({{3\,
\left(-{{\arctan ^{10}x}\over{360}}-{{\arctan \left({{1}\over{x}}
\right)\,\arctan ^9x}\over{36}}\right)}\over{7}}-{{3\,\arctan ^2
\left({{1}\over{x}}\right)\,\arctan ^8x}\over{56}}\right)}\over{3}}-
{{2\,\arctan ^3\left({{1}\over{x}}\right)\,\arctan ^7x}\over{21}}-{{
\arctan ^4\left({{1}\over{x}}\right)\,\arctan ^6x}\over{6}}\right)
}\over{2}}-{{3\,\arctan ^5\left({{1}\over{x}}\right)\,\arctan ^5x
}\over{10}}\right)}\over{3}}-{{7\,\arctan ^6\left({{1}\over{x}}
\right)\,\arctan ^4x}\over{12}}\right)-{{4\,\arctan ^7\left({{1
}\over{x}}\right)\,\arctan ^3x}\over{3}}\right)}\over{131072}}-{{9\,
\arctan ^8\left({{1}\over{x}}\right)\,\arctan ^2x}\over{262144}}
\right)-{{511\,\arctan ^9\left({{1}\over{x}}\right)\,\arctan x
}\over{512}}\right)-9\,{\rm atan2}\left(1 , x\right)\,x\,\left(\log
\left(x^2+1\right)\right)^8+336\,{\rm atan2}\left(1 , x\right)^3\,x
\,\left(\log \left(x^2+1\right)\right)^6-2016\,{\rm atan2}\left(1 ,
x\right)^5\,x\,\left(\log \left(x^2+1\right)\right)^4+2304\,
{\rm atan2}\left(1 , x\right)^7\,x\,\left(\log \left(x^2+1\right)
\right)^2-256\,{\rm atan2}\left(1 , x\right)^9\,x}\over{131072}}$$