Integral of arcctg(x)^9 dx
The solution
The answer (Indefinite)
[src]
−1310721310729∫131072x2+131072arctan(x1)x2(log(x2+1))8dx−9∫131072x2+131072x(log(x2+1))8dx+9∫131072x2+131072arctan(x1)(log(x2+1))8dx+144∫131072x2+131072arctan(x1)x2(log(x2+1))7dx−336∫131072x2+131072arctan3(x1)x2(log(x2+1))6dx+1008∫131072x2+131072arctan2(x1)x(log(x2+1))6dx−336∫131072x2+131072arctan3(x1)(log(x2+1))6dx−4032∫131072x2+131072arctan3(x1)x2(log(x2+1))5dx+2016∫131072x2+131072arctan5(x1)x2(log(x2+1))4dx−10080∫131072x2+131072arctan4(x1)x(log(x2+1))4dx+2016∫131072x2+131072arctan5(x1)(log(x2+1))4dx+16128∫131072x2+131072arctan5(x1)x2(log(x2+1))3dx−2304∫131072x2+131072arctan7(x1)x2(log(x2+1))2dx+16128∫131072x2+131072arctan6(x1)x(log(x2+1))2dx−2304∫131072x2+131072arctan7(x1)(log(x2+1))2dx−9216∫131072x2+131072arctan7(x1)x2log(x2+1)dx−130816∫131072x2+131072arctan9(x1)x2dx−2304∫131072x2+131072arctan8(x1)xdx+1308161310729437233273(−360arctan10x−36arctan(x1)arctan9x)−563arctan2(x1)arctan8x−212arctan3(x1)arctan7x−6arctan4(x1)arctan6x−103arctan5(x1)arctan5x−127arctan6(x1)arctan4x−34arctan7(x1)arctan3x−2621449arctan8(x1)arctan2x−512511arctan9(x1)arctanx−9atan2(1,x)x(log(x2+1))8+336atan2(1,x)3x(log(x2+1))6−2016atan2(1,x)5x(log(x2+1))4+2304atan2(1,x)7x(log(x2+1))2−256atan2(1,x)9x
1
/
|
| 9
| acot (x) dx
|
/
0
∫01(arccotx)9dx
=
1
/
|
| 9
| acot (x) dx
|
/
0
0∫1acot9(x)dx
Use the examples entering the upper and lower limits of integration.