Mister Exam

Other calculators

Integral of arcctg(x)^9 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      9      
 |  acot (x) dx
 |             
/              
0              
01acot9(x)dx\int\limits_{0}^{1} \operatorname{acot}^{9}{\left(x \right)}\, dx
Integral(acot(x)^9, (x, 0, 1))
The answer (Indefinite) [src]
131072(9arctan(1x)x2(log(x2+1))8131072x2+131072  dx9x(log(x2+1))8131072x2+131072  dx+9arctan(1x)(log(x2+1))8131072x2+131072  dx+144arctan(1x)x2(log(x2+1))7131072x2+131072  dx336arctan3(1x)x2(log(x2+1))6131072x2+131072  dx+1008arctan2(1x)x(log(x2+1))6131072x2+131072  dx336arctan3(1x)(log(x2+1))6131072x2+131072  dx4032arctan3(1x)x2(log(x2+1))5131072x2+131072  dx+2016arctan5(1x)x2(log(x2+1))4131072x2+131072  dx10080arctan4(1x)x(log(x2+1))4131072x2+131072  dx+2016arctan5(1x)(log(x2+1))4131072x2+131072  dx+16128arctan5(1x)x2(log(x2+1))3131072x2+131072  dx2304arctan7(1x)x2(log(x2+1))2131072x2+131072  dx+16128arctan6(1x)x(log(x2+1))2131072x2+131072  dx2304arctan7(1x)(log(x2+1))2131072x2+131072  dx9216arctan7(1x)x2log(x2+1)131072x2+131072  dx130816arctan9(1x)x2131072x2+131072  dx2304arctan8(1x)x131072x2+131072  dx+130816(9(4(7(3(2(3(arctan10x360arctan(1x)arctan9x36)73arctan2(1x)arctan8x56)32arctan3(1x)arctan7x21arctan4(1x)arctan6x6)23arctan5(1x)arctan5x10)37arctan6(1x)arctan4x12)4arctan7(1x)arctan3x3)1310729arctan8(1x)arctan2x262144)511arctan9(1x)arctanx512)9atan2(1,x)x(log(x2+1))8+336atan2(1,x)3x(log(x2+1))62016atan2(1,x)5x(log(x2+1))4+2304atan2(1,x)7x(log(x2+1))2256atan2(1,x)9x131072-{{131072\,\left(9\,\int {{{\arctan \left({{1}\over{x}}\right)\,x^2 \,\left(\log \left(x^2+1\right)\right)^8}\over{131072\,x^2+131072}} }{\;dx}-9\,\int {{{x\,\left(\log \left(x^2+1\right)\right)^8}\over{ 131072\,x^2+131072}}}{\;dx}+9\,\int {{{\arctan \left({{1}\over{x}} \right)\,\left(\log \left(x^2+1\right)\right)^8}\over{131072\,x^2+ 131072}}}{\;dx}+144\,\int {{{\arctan \left({{1}\over{x}}\right)\,x^2 \,\left(\log \left(x^2+1\right)\right)^7}\over{131072\,x^2+131072}} }{\;dx}-336\,\int {{{\arctan ^3\left({{1}\over{x}}\right)\,x^2\, \left(\log \left(x^2+1\right)\right)^6}\over{131072\,x^2+131072}} }{\;dx}+1008\,\int {{{\arctan ^2\left({{1}\over{x}}\right)\,x\, \left(\log \left(x^2+1\right)\right)^6}\over{131072\,x^2+131072}} }{\;dx}-336\,\int {{{\arctan ^3\left({{1}\over{x}}\right)\,\left( \log \left(x^2+1\right)\right)^6}\over{131072\,x^2+131072}}}{\;dx}- 4032\,\int {{{\arctan ^3\left({{1}\over{x}}\right)\,x^2\,\left(\log \left(x^2+1\right)\right)^5}\over{131072\,x^2+131072}}}{\;dx}+2016\, \int {{{\arctan ^5\left({{1}\over{x}}\right)\,x^2\,\left(\log \left( x^2+1\right)\right)^4}\over{131072\,x^2+131072}}}{\;dx}-10080\, \int {{{\arctan ^4\left({{1}\over{x}}\right)\,x\,\left(\log \left(x^ 2+1\right)\right)^4}\over{131072\,x^2+131072}}}{\;dx}+2016\,\int {{{ \arctan ^5\left({{1}\over{x}}\right)\,\left(\log \left(x^2+1\right) \right)^4}\over{131072\,x^2+131072}}}{\;dx}+16128\,\int {{{\arctan ^ 5\left({{1}\over{x}}\right)\,x^2\,\left(\log \left(x^2+1\right) \right)^3}\over{131072\,x^2+131072}}}{\;dx}-2304\,\int {{{\arctan ^7 \left({{1}\over{x}}\right)\,x^2\,\left(\log \left(x^2+1\right) \right)^2}\over{131072\,x^2+131072}}}{\;dx}+16128\,\int {{{\arctan ^ 6\left({{1}\over{x}}\right)\,x\,\left(\log \left(x^2+1\right)\right) ^2}\over{131072\,x^2+131072}}}{\;dx}-2304\,\int {{{\arctan ^7\left( {{1}\over{x}}\right)\,\left(\log \left(x^2+1\right)\right)^2}\over{ 131072\,x^2+131072}}}{\;dx}-9216\,\int {{{\arctan ^7\left({{1}\over{ x}}\right)\,x^2\,\log \left(x^2+1\right)}\over{131072\,x^2+131072}} }{\;dx}-130816\,\int {{{\arctan ^9\left({{1}\over{x}}\right)\,x^2 }\over{131072\,x^2+131072}}}{\;dx}-2304\,\int {{{\arctan ^8\left({{1 }\over{x}}\right)\,x}\over{131072\,x^2+131072}}}{\;dx}+130816\, \left({{9\,\left(4\,\left({{7\,\left({{3\,\left({{2\,\left({{3\, \left(-{{\arctan ^{10}x}\over{360}}-{{\arctan \left({{1}\over{x}} \right)\,\arctan ^9x}\over{36}}\right)}\over{7}}-{{3\,\arctan ^2 \left({{1}\over{x}}\right)\,\arctan ^8x}\over{56}}\right)}\over{3}}- {{2\,\arctan ^3\left({{1}\over{x}}\right)\,\arctan ^7x}\over{21}}-{{ \arctan ^4\left({{1}\over{x}}\right)\,\arctan ^6x}\over{6}}\right) }\over{2}}-{{3\,\arctan ^5\left({{1}\over{x}}\right)\,\arctan ^5x }\over{10}}\right)}\over{3}}-{{7\,\arctan ^6\left({{1}\over{x}} \right)\,\arctan ^4x}\over{12}}\right)-{{4\,\arctan ^7\left({{1 }\over{x}}\right)\,\arctan ^3x}\over{3}}\right)}\over{131072}}-{{9\, \arctan ^8\left({{1}\over{x}}\right)\,\arctan ^2x}\over{262144}} \right)-{{511\,\arctan ^9\left({{1}\over{x}}\right)\,\arctan x }\over{512}}\right)-9\,{\rm atan2}\left(1 , x\right)\,x\,\left(\log \left(x^2+1\right)\right)^8+336\,{\rm atan2}\left(1 , x\right)^3\,x \,\left(\log \left(x^2+1\right)\right)^6-2016\,{\rm atan2}\left(1 , x\right)^5\,x\,\left(\log \left(x^2+1\right)\right)^4+2304\, {\rm atan2}\left(1 , x\right)^7\,x\,\left(\log \left(x^2+1\right) \right)^2-256\,{\rm atan2}\left(1 , x\right)^9\,x}\over{131072}}
The answer [src]
  1            
  /            
 |             
 |      9      
 |  acot (x) dx
 |             
/              
0              
01(arccot  x)9  dx\int_{0}^{1}{\left({\rm arccot}\; x\right)^9\;dx}
=
=
  1            
  /            
 |             
 |      9      
 |  acot (x) dx
 |             
/              
0              
01acot9(x)dx\int\limits_{0}^{1} \operatorname{acot}^{9}{\left(x \right)}\, dx
Numerical answer [src]
9.51158422982041
9.51158422982041

    Use the examples entering the upper and lower limits of integration.